-
Notifications
You must be signed in to change notification settings - Fork 0
SymmetricOperator
{{TEX|done}}
A linear mapping
===Examples===
Let $|a_{ij}|$ , $i,j=1,2,\ldots$ , be an infinite matrix such that $a_{ij}=\overline{a}{ji}$, and \begin{equation}\sum{i,j=1}^{\infty}|a_{ij}|^2<\infty .\end{equation} Then the system of equations \begin{equation}\eta_i=\sum_{j=1}^{\infty}a_{ij}\xi_j,\quad i=1,2,\ldots,\end{equation} defining $y={\eta_i}$ for an $x={\xi_i}\in l_2$ , defines a bounded symmetric operator, which turns out to be self-adjoint on the complex space $l_2$ .
In the complex space $L_2(0,1)$ , let $A=id/dt$ be defined on the set $D_A$ of absolutely continuous function $x$ on $[0,1]$ having a square-summable derivative and satisfying the condition $x(0)=x(1)=0$ . Then $A$ is symmetric but not self-adjoint.
===References===
[1] | L.A. [L.A. Lyusternik] Liusternik, "Elements of functional analysis" , F. Ungar (1961) (Translated from Russian) |
[2] | F. Riesz, B. Szökevalfi-Nagy, "Leçons d'analyse fonctionelle" , Akad. Kiado (1955) |
===Comments===
An important problem is to find a self-adjoint extension of a symmetric operator. This problem has different versions, depending on whether one looks for an extension in the original or in a larger space. A complete theory of this topic exists.
===References===
[a1] | N.I. Akhiezer, I.M. Glazman, "Theory of linear operators in Hilbert space" , '''1–2''' , Pitman (1980) (Translated from Russian) |