Skip to content

Synthesis of the Ether Linked Series

MFernflower edited this page Mar 14, 2019 · 4 revisions

Synthesis of the Ether-Linked Series

The synthesis of members of the ether series has been largely solved by Jo Ubels, as shown below.

Summary of Synthetic Approach to Ether Series

The cyclisation was achieved, initially not in the ca. 50% yields reported by the original CRO. Jo Ubels has solved this, with input from others such as a student working with Patrick Thomson, Devon Scott. The boys at Sydney Grammar School have also studied the early stages of the synthesis.

The union of the alcohol fragment with the chloro-intermediate was for a long time not proceeding cleanly, and this was also found by the CRO that first reported this route. Jo Ubels' lit survey found conditions involving a crown ether that has worked reliably. There have been periodic discussions about which alcohols to employ in the resulting synthetic scheme (post from April 2014, GHI174).

A synthetic challenge was the efficiency of the oxidative cyclization to form the triazolopyrazine. There was much discussion of the use of oxidants such as PIDA and chloramine T (Overview GHI 206) as well as the possibility that hydrazone isomers were cyclising at different rates (both Github Issue 97).

Some of the ether compounds contain a stereogenic centre in the benzylic position - structures are in the SAR section above, and the syntheses of these are dealt with in the stereochemistry page of this wiki.

Methods for attachment of the alcohol to the triazolopyrazine core

Generally, we have used one of the following three methods for the SnAr attachment of the alcohol fragment to the monochlorotriazolopyrazine core.

Method A - KOH in crown ether + toluene

Representative ELN entry

Method B - potassium tert-butoxide in 1,4 dioxane

Representative ELN entry

Method C - NaH in DMF

Representative ELN entry

Background

What is OSM Series 4?

Aims, Concerns and Current Interest in Series 4

Sources of Data

Structure-Activity Relationships

Modification of Core Triazolopyrazine

Modification of Pyrazine Substitution Pattern

Modification of the Triazole Substitution

Pyrazine Side Chain Modifications - Ethers

Pyrazine Side Chain Modifications - Amides

Pyrazine Side Chain Modifications - Reversed Amides

Pyrazine Side Chain Modifications - Others

Metabolites

Biological Data Currently not Incorporated into the Main Wiki Sections

Physicochemical/Metabolic Parameters

Physicochem/metabolism/PK

Metabolism ID

Aldehyde Oxidase Assay

Stages and Efficacy

Liver Stage

Gametocyte Stage

In Vivo Efficacy

Potency vs. Resistant Strains

Other Observations

Mechanism of Action, Activity and Toxicity

Mechanism of Action: Possible PfATP4 Activity Deduced from Parasite Ion Regulation Assays

hERG Activity

Toxicity

Synthetic Chemistry

Synthetic Design

Synthesis of the Ether-Linked Series

Synthesis of the Amide-Linked Series

Synthesis of the Reverse Amide- Linked Series

Synthesis of Benzylic Functionalised Ether-Linked Series

Alternative Routes to the Triazolopyrazine Core

Triazolopyrazine telesubstitution

Biofunctionalisation

Late Stage Functionalisation

Fluoroalkene Isostere

Spectroscopy

Chirality, Relevant and Desirable Compounds

Chirality/Stereogenic Centres in This Series

Other Sources of Compounds Relevant to this Series

Desirable Compounds Not Yet Synthesised

Other Evaluations

Evaluations vs Other Organisms

Strings

Strings for Google

Clone this wiki locally