Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Kernel oops in bcm2708_fb.c #50

Closed
keylevel opened this issue Jul 11, 2012 · 3 comments
Closed

Kernel oops in bcm2708_fb.c #50

keylevel opened this issue Jul 11, 2012 · 3 comments

Comments

@keylevel
Copy link

Running a program under 'X' with:

/usr/bin/xinit /usr/sbin/xinitrc -- /usr/bin/Xfbdev
/usr/bin/xinit /usr/sbin/xinitrc /usr/bin/Xfbdev
resulted in the following when I used Ctrl-C to exit:

[  137.795994] bcm2708_fb_check_var info(c78e9400) 1024x768 (1024x768), 1572864, 16
[  137.796035] bcm2708_fb_check_var var(c7a49d98) 1024x768 (1024x768), 16, 786432
[  137.796060] bcm2708_fb_set_par info(c78e9400) 1024x768 (1024x768), 1572864, 16
[  137.796148] ------------[ cut here ]------------
[  137.796201] WARNING: at arch/arm/mm/ioremap.c:207 __arm_ioremap_pfn_caller+0x1a4/0x1bc()
[  137.796216] Modules linked in:
[  137.796278] [<c0014ee4>] (unwind_backtrace+0x0/0xfc) from [<c03eb968>] (dump_stack+0x20/0x24)
[  137.796320] [<c03eb968>] (dump_stack+0x20/0x24) from [<c002e8c0>] (warn_slowpath_common+0x5c/0x74)
[  137.796357] [<c002e8c0>] (warn_slowpath_common+0x5c/0x74) from [<c002e904>] (warn_slowpath_null+0x2c/0x34)
[  137.796421] [<c002e904>] (warn_slowpath_null+0x2c/0x34) from [<c0019714>] (__arm_ioremap_pfn_caller+0x1a4/0x1bc)
[  137.796463] [<c0019714>] (__arm_ioremap_pfn_caller+0x1a4/0x1bc) from [<c00197bc>] (__arm_ioremap_caller+0x68/0x70)
[  137.796517] [<c00197bc>] (__arm_ioremap_caller+0x68/0x70) from [<c00197e0>] (__arm_ioremap+0x1c/0x20)
[  137.796565] [<c00197e0>] (__arm_ioremap+0x1c/0x20) from [<c026ac28>] (bcm2708_fb_set_par+0x11c/0x190)
[  137.796624] [<c026ac28>] (bcm2708_fb_set_par+0x11c/0x190) from [<c025d91c>] (fb_set_var+0x13c/0x2a8)
[  137.796684] [<c025d91c>] (fb_set_var+0x13c/0x2a8) from [<c025ddbc>] (do_fb_ioctl+0x334/0x610)
[  137.796720] [<c025ddbc>] (do_fb_ioctl+0x334/0x610) from [<c025e0e4>] (fb_ioctl+0x4c/0x5c)
[  137.796780] [<c025e0e4>] (fb_ioctl+0x4c/0x5c) from [<c0105918>] (do_vfs_ioctl+0x8c/0x5a8)
[  137.796818] [<c0105918>] (do_vfs_ioctl+0x8c/0x5a8) from [<c0105e7c>] (sys_ioctl+0x48/0x6c)
[  137.796861] [<c0105e7c>] (sys_ioctl+0x48/0x6c) from [<c000dd80>] (ret_fast_syscall+0x0/0x48)
[  137.796902] ---[ end trace 671f3d1a61f80c7a ]---
[  137.955733] kernel BUG at drivers/video/bcm2708_fb.c:251!
[  137.966062] Unable to handle kernel NULL pointer dereference at virtual address 00000000
[  137.974847] pgd = c6d20000
[  137.977602] [00000000] *pgd=06ddd831, *pte=00000000, *ppte=00000000
[  137.984472] Internal error: Oops: 817 [#1] PREEMPT

This is my own build (using Yocto Project), but I don't think that's the cause given the point of failure.

@popcornmix
Copy link
Collaborator

Yes, I've seen this too. I know what's going wrong, but not why. The mailbox is not blocking, so we get a NULL framebuffer base address back. A sleep before the bcm_mailbox_read will probably provide a workaround.

@popcornmix
Copy link
Collaborator

This is fixed in recent kernels. Please test and close.

@keylevel
Copy link
Author

Looks good. I used to get a crash on the second or third exit, but I can't get it to fail now.

I am sometimes seeing:

/usr/bin/xinit: XFree86_VT property unexpectedly has 0 items instead of 1

but that's at startup.

Olipro pushed a commit to Olipro/linux-RPi that referenced this issue Dec 26, 2012
fix:
[  132.474633] 3.5.0-rc1+ raspberrypi#50 Not tainted
[  132.474634] -------------------------------
[  132.474635] include/linux/kvm_host.h:369 suspicious rcu_dereference_check() usage!
[  132.474636]
[  132.474636] other info that might help us debug this:
[  132.474636]
[  132.474638]
[  132.474638] rcu_scheduler_active = 1, debug_locks = 1
[  132.474640] 1 lock held by qemu-kvm/2832:
[  132.474657]  #0:  (&vcpu->mutex){+.+.+.}, at: [<ffffffffa01e1636>] vcpu_load+0x1e/0x91 [kvm]
[  132.474658]
[  132.474658] stack backtrace:
[  132.474660] Pid: 2832, comm: qemu-kvm Not tainted 3.5.0-rc1+ raspberrypi#50
[  132.474661] Call Trace:
[  132.474665]  [<ffffffff81092f40>] lockdep_rcu_suspicious+0xfc/0x105
[  132.474675]  [<ffffffffa01e0c85>] kvm_memslots+0x6d/0x75 [kvm]
[  132.474683]  [<ffffffffa01e0ca1>] gfn_to_memslot+0x14/0x4c [kvm]
[  132.474693]  [<ffffffffa01e3575>] mark_page_dirty+0x17/0x2a [kvm]
[  132.474706]  [<ffffffffa01f21ea>] kvm_arch_vcpu_ioctl+0xbcf/0xc07 [kvm]

Actually, we do not write vcpu->arch.time at this time, mark_page_dirty
should be removed.

Signed-off-by: Xiao Guangrong <[email protected]>
Signed-off-by: Marcelo Tosatti <[email protected]>
popcornmix pushed a commit that referenced this issue Jul 3, 2013
was playing with suspend and run into this:

|BUG: sleeping function called from invalid context at drivers/base/power/runtime.c:891
|in_atomic(): 1, irqs_disabled(): 0, pid: 1963, name: bash
|6 locks held by bash/1963:
|CPU: 0 PID: 1963 Comm: bash Not tainted 3.10.0-rc4+ #50
|[<c0014fdc>] (unwind_backtrace+0x0/0xf8) from [<c0011da4>] (show_stack+0x10/0x14)
|[<c0011da4>] (show_stack+0x10/0x14) from [<c02e8680>] (__pm_runtime_idle+0xa4/0xac)
|[<c02e8680>] (__pm_runtime_idle+0xa4/0xac) from [<c0341158>] (davinci_mdio_suspend+0x6c/0x9c)
|[<c0341158>] (davinci_mdio_suspend+0x6c/0x9c) from [<c02e0628>] (platform_pm_suspend+0x2c/0x54)
|[<c02e0628>] (platform_pm_suspend+0x2c/0x54) from [<c02e52bc>] (dpm_run_callback.isra.3+0x2c/0x64)
|[<c02e52bc>] (dpm_run_callback.isra.3+0x2c/0x64) from [<c02e57e4>] (__device_suspend+0x100/0x22c)
|[<c02e57e4>] (__device_suspend+0x100/0x22c) from [<c02e67e8>] (dpm_suspend+0x68/0x230)
|[<c02e67e8>] (dpm_suspend+0x68/0x230) from [<c0072a20>] (suspend_devices_and_enter+0x68/0x350)
|[<c0072a20>] (suspend_devices_and_enter+0x68/0x350) from [<c0072f18>] (pm_suspend+0x210/0x24c)
|[<c0072f18>] (pm_suspend+0x210/0x24c) from [<c0071c74>] (state_store+0x6c/0xbc)
|[<c0071c74>] (state_store+0x6c/0xbc) from [<c02714dc>] (kobj_attr_store+0x14/0x20)
|[<c02714dc>] (kobj_attr_store+0x14/0x20) from [<c01341a0>] (sysfs_write_file+0x16c/0x19c)
|[<c01341a0>] (sysfs_write_file+0x16c/0x19c) from [<c00ddfe4>] (vfs_write+0xb4/0x190)
|[<c00ddfe4>] (vfs_write+0xb4/0x190) from [<c00de3a4>] (SyS_write+0x3c/0x70)
|[<c00de3a4>] (SyS_write+0x3c/0x70) from [<c000e2c0>] (ret_fast_syscall+0x0/0x48)

I don't see a reason why the pm_runtime call must be under the lock.
Further I don't understand why this is a spinlock and not mutex.

Cc: Mugunthan V N <[email protected]>
Signed-off-by: Sebastian Andrzej Siewior <[email protected]>
Acked-by: Mugunthan V N <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
M1cha pushed a commit to M1cha/android_kernel_broadcom_rpi that referenced this issue Jul 4, 2014
…ll_time_in_state

Commit 40cf2f8 (cpufreq: Persist cpufreq time in state data across hotplug)
causes the following call trace to be spit on boot:

BUG: sleeping function called from invalid context at mm/slub.c:936
in_atomic(): 1, irqs_disabled(): 0, pid: 1, name: swapper/0
CPU: 6 PID: 1 Comm: swapper/0 Not tainted 3.10.9-20140624.172707-eng-gd6c0f69-dirty raspberrypi#50
Backtrace:
[<c0012270>] (dump_backtrace+0x0/0x10c) from [<c001256c>] (show_stack+0x18/0x1c)
 r6:ffff1788 r5:c0c020c0 r4:e609c000 r3:00000000
[<c0012554>] (show_stack+0x0/0x1c) from [<c07a2970>] (dump_stack+0x20/0x28)
[<c07a2950>] (dump_stack+0x0/0x28) from [<c0057678>] (__might_sleep+0x104/0x120)
[<c0057574>] (__might_sleep+0x0/0x120) from [<c00ff000>] (__kmalloc_track_caller+0x144/0x274)
 r6:00000000 r5:e609c000 r4:e6802140
[<c00feebc>] (__kmalloc_track_caller+0x0/0x274) from [<c00da098>] (krealloc+0x58/0xb0)
[<c00da040>] (krealloc+0x0/0xb0) from [<c050266c>] (cpufreq_allstats_create+0x120/0x204)
 r8:e4c4ff00 r7:c0d266b8 r6:0013d620 r5:e4c4e600 r4:00000001
r3:e535d6d0
[<c050254c>] (cpufreq_allstats_create+0x0/0x204) from [<c0502e38>] (cpufreq_stat_notifier_policy+0xb8/0xd0)
[<c0502d80>] (cpufreq_stat_notifier_policy+0x0/0xd0) from [<c00517cc>] (notifier_call_chain+0x4c/0x8c)
 r5:00000000 r4:fffffffe
[<c0051780>] (notifier_call_chain+0x0/0x8c) from [<c00519fc>] (__blocking_notifier_call_chain+0x50/0x68)
 r8:c0cd4d00 r7:00000002 r6:e609dd7c r5:ffffffff r4:c0d25a4c
r3:ffffffff
[<c00519ac>] (__blocking_notifier_call_chain+0x0/0x68) from [<c0051a34>] (blocking_notifier_call_chain+0x20/0x28)
 r7:c0e24f30 r6:00000000 r5:e53e1e00 r4:e609dd7c
[<c0051a14>] (blocking_notifier_call_chain+0x0/0x28) from [<c0500fec>] (__cpufreq_set_policy+0xc0/0x1d0)
[<c0500f2c>] (__cpufreq_set_policy+0x0/0x1d0) from [<c0501308>] (cpufreq_add_dev_interface+0x20c/0x270)
 r7:00000008 r6:00000000 r5:e53e1e00 r4:e53e1e58
[<c05010fc>] (cpufreq_add_dev_interface+0x0/0x270) from [<c05016a8>] (cpufreq_add_dev+0x33c/0x420)
[<c050136c>] (cpufreq_add_dev+0x0/0x420) from [<c03604a4>] (subsys_interface_register+0x80/0xbc)
[<c0360424>] (subsys_interface_register+0x0/0xbc) from [<c050035c>] (cpufreq_register_driver+0x8c/0x194)

Change-Id: If77a656d0ea60a8fc4083283d104509fa6c07f8f
Signed-off-by: Minsung Kim <[email protected]>
toddtreece pushed a commit to adafruit/adafruit-raspberrypi-linux that referenced this issue Mar 4, 2015
anholt referenced this issue in anholt/linux Oct 12, 2015
During quick plug/removal of OTG adapter during dual-role testing
it can happen that xhci_alloc_device() is called for the newly
detected device after the DRD library has called xhci_stop to
remove the HCD.

If that is the case, just fail early to prevent the following warning.

[  154.732649] hub 4-0:1.0: USB hub found
[  154.742204] hub 4-0:1.0: 1 port detected
[  154.824458] hub 3-0:1.0: state 7 ports 1 chg 0002 evt 0000
[  154.854609] hub 4-0:1.0: state 7 ports 1 chg 0000 evt 0000
[  154.944430] usb 3-1: new high-speed USB device number 2 using xhci-hcd
[  154.951009] xhci-hcd xhci-hcd.0.auto: xhci_setup_device
[  155.038191] xhci-hcd xhci-hcd.0.auto: remove, state 4
[  155.043315] usb usb4: USB disconnect, device number 1
[  155.055270] xhci-hcd xhci-hcd.0.auto: xhci_stop
[  155.060094] xhci-hcd xhci-hcd.0.auto: USB bus 4 deregistered
[  155.066576] xhci-hcd xhci-hcd.0.auto: remove, state 1
[  155.071710] usb usb3: USB disconnect, device number 1
[  155.077124] xhci-hcd xhci-hcd.0.auto: xhci_setup_device
[  155.082389] ------------[ cut here ]------------
[  155.087690] WARNING: CPU: 0 PID: 72 at drivers/usb/host/xhci.c:3800 xhci_setup_device+0x410/0x484 [xhci_hcd]()
[  155.097861] Modules linked in: sd_mod usb_storage scsi_mod usb_f_ss_lb g_zero libcomposite ipv6 xhci_plat_hcd xhci_hcd usbcore dwc3 udc_core evdev ti_am335x_adc joydev kfifo_buf industrialio snd_soc_simple_cc
[  155.146734] CPU: 0 PID: 72 Comm: kworker/0:3 Tainted: G        W       4.1.4-00834-gcd9380b-dirty #50
[  155.156073] Hardware name: Generic AM43 (Flattened Device Tree)
[  155.162117] Workqueue: usb_hub_wq hub_event [usbcore]
[  155.167249] Backtrace:
[  155.169751] [<c0012af0>] (dump_backtrace) from [<c0012c8c>] (show_stack+0x18/0x1c)
[  155.177390]  r6:c089d4a4 r5:ffffffff r4:00000000 r3:ee46c000
[  155.183137] [<c0012c74>] (show_stack) from [<c05f7c14>] (dump_stack+0x84/0xd0)
[  155.190446] [<c05f7b90>] (dump_stack) from [<c00439ac>] (warn_slowpath_common+0x80/0xbc)
[  155.198605]  r7:00000009 r6:00000ed8 r5:bf27eb70 r4:00000000
[  155.204348] [<c004392c>] (warn_slowpath_common) from [<c0043a0c>] (warn_slowpath_null+0x24/0x2c)
[  155.213202]  r8:ee49f000 r7:ee7c0004 r6:00000000 r5:ee7c0158 r4:ee7c0000
[  155.220051] [<c00439e8>] (warn_slowpath_null) from [<bf27eb70>] (xhci_setup_device+0x410/0x484 [xhci_hcd])
[  155.229816] [<bf27e760>] (xhci_setup_device [xhci_hcd]) from [<bf27ec10>] (xhci_address_device+0x14/0x18 [xhci_hcd])
[  155.240415]  r10:ee598200 r9:00000001 r8:00000002 r7:00000001 r6:00000003 r5:00000002
[  155.248363]  r4:ee49f000
[  155.250978] [<bf27ebfc>] (xhci_address_device [xhci_hcd]) from [<bf20cb94>] (hub_port_init+0x1b8/0xa9c [usbcore])
[  155.261403] [<bf20c9dc>] (hub_port_init [usbcore]) from [<bf2101e0>] (hub_event+0x738/0x1020 [usbcore])
[  155.270874]  r10:ee598200 r9:ee7c0000 r8:ee7c0038 r7:ee518800 r6:ee49f000 r5:00000001
[  155.278822]  r4:00000000
[  155.281426] [<bf20faa8>] (hub_event [usbcore]) from [<c005754c>] (process_one_work+0x128/0x340)
[  155.290196]  r10:00000000 r9:00000003 r8:00000000 r7:fedfa000 r6:eeec5400 r5:ee598314
[  155.298151]  r4:ee434380
[  155.300718] [<c0057424>] (process_one_work) from [<c00578f8>] (worker_thread+0x158/0x49c)
[  155.308963]  r10:ee434380 r9:00000003 r8:eeec5400 r7:00000008 r6:ee434398 r5:eeec5400
[  155.316913]  r4:eeec5414
[  155.319482] [<c00577a0>] (worker_thread) from [<c005cc40>] (kthread+0xdc/0xf8)
[  155.326765]  r10:00000000 r9:00000000 r8:00000000 r7:c00577a0 r6:ee434380 r5:ee4441c0
[  155.334713]  r4:00000000 r3:00000000
[  155.338341] [<c005cb64>] (kthread) from [<c000fc08>] (ret_from_fork+0x14/0x2c)
[  155.345626]  r7:00000000 r6:00000000 r5:c005cb64 r4:ee4441c0
[  155.356108] ---[ end trace a58d34c223b190e6 ]---
[  155.360783] xhci-hcd xhci-hcd.0.auto: Virt dev invalid for slot_id 0x1!
[  155.574404] xhci-hcd xhci-hcd.0.auto: xhci_setup_device
[  155.579667] ------------[ cut here ]------------

Cc: <[email protected]>
Signed-off-by: Roger Quadros <[email protected]>
Signed-off-by: Mathias Nyman <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
popcornmix pushed a commit that referenced this issue Oct 23, 2015
commit 448116b upstream.

During quick plug/removal of OTG adapter during dual-role testing
it can happen that xhci_alloc_device() is called for the newly
detected device after the DRD library has called xhci_stop to
remove the HCD.

If that is the case, just fail early to prevent the following warning.

[  154.732649] hub 4-0:1.0: USB hub found
[  154.742204] hub 4-0:1.0: 1 port detected
[  154.824458] hub 3-0:1.0: state 7 ports 1 chg 0002 evt 0000
[  154.854609] hub 4-0:1.0: state 7 ports 1 chg 0000 evt 0000
[  154.944430] usb 3-1: new high-speed USB device number 2 using xhci-hcd
[  154.951009] xhci-hcd xhci-hcd.0.auto: xhci_setup_device
[  155.038191] xhci-hcd xhci-hcd.0.auto: remove, state 4
[  155.043315] usb usb4: USB disconnect, device number 1
[  155.055270] xhci-hcd xhci-hcd.0.auto: xhci_stop
[  155.060094] xhci-hcd xhci-hcd.0.auto: USB bus 4 deregistered
[  155.066576] xhci-hcd xhci-hcd.0.auto: remove, state 1
[  155.071710] usb usb3: USB disconnect, device number 1
[  155.077124] xhci-hcd xhci-hcd.0.auto: xhci_setup_device
[  155.082389] ------------[ cut here ]------------
[  155.087690] WARNING: CPU: 0 PID: 72 at drivers/usb/host/xhci.c:3800 xhci_setup_device+0x410/0x484 [xhci_hcd]()
[  155.097861] Modules linked in: sd_mod usb_storage scsi_mod usb_f_ss_lb g_zero libcomposite ipv6 xhci_plat_hcd xhci_hcd usbcore dwc3 udc_core evdev ti_am335x_adc joydev kfifo_buf industrialio snd_soc_simple_cc
[  155.146734] CPU: 0 PID: 72 Comm: kworker/0:3 Tainted: G        W       4.1.4-00834-gcd9380b-dirty #50
[  155.156073] Hardware name: Generic AM43 (Flattened Device Tree)
[  155.162117] Workqueue: usb_hub_wq hub_event [usbcore]
[  155.167249] Backtrace:
[  155.169751] [<c0012af0>] (dump_backtrace) from [<c0012c8c>] (show_stack+0x18/0x1c)
[  155.177390]  r6:c089d4a4 r5:ffffffff r4:00000000 r3:ee46c000
[  155.183137] [<c0012c74>] (show_stack) from [<c05f7c14>] (dump_stack+0x84/0xd0)
[  155.190446] [<c05f7b90>] (dump_stack) from [<c00439ac>] (warn_slowpath_common+0x80/0xbc)
[  155.198605]  r7:00000009 r6:00000ed8 r5:bf27eb70 r4:00000000
[  155.204348] [<c004392c>] (warn_slowpath_common) from [<c0043a0c>] (warn_slowpath_null+0x24/0x2c)
[  155.213202]  r8:ee49f000 r7:ee7c0004 r6:00000000 r5:ee7c0158 r4:ee7c0000
[  155.220051] [<c00439e8>] (warn_slowpath_null) from [<bf27eb70>] (xhci_setup_device+0x410/0x484 [xhci_hcd])
[  155.229816] [<bf27e760>] (xhci_setup_device [xhci_hcd]) from [<bf27ec10>] (xhci_address_device+0x14/0x18 [xhci_hcd])
[  155.240415]  r10:ee598200 r9:00000001 r8:00000002 r7:00000001 r6:00000003 r5:00000002
[  155.248363]  r4:ee49f000
[  155.250978] [<bf27ebfc>] (xhci_address_device [xhci_hcd]) from [<bf20cb94>] (hub_port_init+0x1b8/0xa9c [usbcore])
[  155.261403] [<bf20c9dc>] (hub_port_init [usbcore]) from [<bf2101e0>] (hub_event+0x738/0x1020 [usbcore])
[  155.270874]  r10:ee598200 r9:ee7c0000 r8:ee7c0038 r7:ee518800 r6:ee49f000 r5:00000001
[  155.278822]  r4:00000000
[  155.281426] [<bf20faa8>] (hub_event [usbcore]) from [<c005754c>] (process_one_work+0x128/0x340)
[  155.290196]  r10:00000000 r9:00000003 r8:00000000 r7:fedfa000 r6:eeec5400 r5:ee598314
[  155.298151]  r4:ee434380
[  155.300718] [<c0057424>] (process_one_work) from [<c00578f8>] (worker_thread+0x158/0x49c)
[  155.308963]  r10:ee434380 r9:00000003 r8:eeec5400 r7:00000008 r6:ee434398 r5:eeec5400
[  155.316913]  r4:eeec5414
[  155.319482] [<c00577a0>] (worker_thread) from [<c005cc40>] (kthread+0xdc/0xf8)
[  155.326765]  r10:00000000 r9:00000000 r8:00000000 r7:c00577a0 r6:ee434380 r5:ee4441c0
[  155.334713]  r4:00000000 r3:00000000
[  155.338341] [<c005cb64>] (kthread) from [<c000fc08>] (ret_from_fork+0x14/0x2c)
[  155.345626]  r7:00000000 r6:00000000 r5:c005cb64 r4:ee4441c0
[  155.356108] ---[ end trace a58d34c223b190e6 ]---
[  155.360783] xhci-hcd xhci-hcd.0.auto: Virt dev invalid for slot_id 0x1!
[  155.574404] xhci-hcd xhci-hcd.0.auto: xhci_setup_device
[  155.579667] ------------[ cut here ]------------

Signed-off-by: Roger Quadros <[email protected]>
Signed-off-by: Mathias Nyman <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
popcornmix pushed a commit that referenced this issue Oct 23, 2015
commit 448116b upstream.

During quick plug/removal of OTG adapter during dual-role testing
it can happen that xhci_alloc_device() is called for the newly
detected device after the DRD library has called xhci_stop to
remove the HCD.

If that is the case, just fail early to prevent the following warning.

[  154.732649] hub 4-0:1.0: USB hub found
[  154.742204] hub 4-0:1.0: 1 port detected
[  154.824458] hub 3-0:1.0: state 7 ports 1 chg 0002 evt 0000
[  154.854609] hub 4-0:1.0: state 7 ports 1 chg 0000 evt 0000
[  154.944430] usb 3-1: new high-speed USB device number 2 using xhci-hcd
[  154.951009] xhci-hcd xhci-hcd.0.auto: xhci_setup_device
[  155.038191] xhci-hcd xhci-hcd.0.auto: remove, state 4
[  155.043315] usb usb4: USB disconnect, device number 1
[  155.055270] xhci-hcd xhci-hcd.0.auto: xhci_stop
[  155.060094] xhci-hcd xhci-hcd.0.auto: USB bus 4 deregistered
[  155.066576] xhci-hcd xhci-hcd.0.auto: remove, state 1
[  155.071710] usb usb3: USB disconnect, device number 1
[  155.077124] xhci-hcd xhci-hcd.0.auto: xhci_setup_device
[  155.082389] ------------[ cut here ]------------
[  155.087690] WARNING: CPU: 0 PID: 72 at drivers/usb/host/xhci.c:3800 xhci_setup_device+0x410/0x484 [xhci_hcd]()
[  155.097861] Modules linked in: sd_mod usb_storage scsi_mod usb_f_ss_lb g_zero libcomposite ipv6 xhci_plat_hcd xhci_hcd usbcore dwc3 udc_core evdev ti_am335x_adc joydev kfifo_buf industrialio snd_soc_simple_cc
[  155.146734] CPU: 0 PID: 72 Comm: kworker/0:3 Tainted: G        W       4.1.4-00834-gcd9380b-dirty #50
[  155.156073] Hardware name: Generic AM43 (Flattened Device Tree)
[  155.162117] Workqueue: usb_hub_wq hub_event [usbcore]
[  155.167249] Backtrace:
[  155.169751] [<c0012af0>] (dump_backtrace) from [<c0012c8c>] (show_stack+0x18/0x1c)
[  155.177390]  r6:c089d4a4 r5:ffffffff r4:00000000 r3:ee46c000
[  155.183137] [<c0012c74>] (show_stack) from [<c05f7c14>] (dump_stack+0x84/0xd0)
[  155.190446] [<c05f7b90>] (dump_stack) from [<c00439ac>] (warn_slowpath_common+0x80/0xbc)
[  155.198605]  r7:00000009 r6:00000ed8 r5:bf27eb70 r4:00000000
[  155.204348] [<c004392c>] (warn_slowpath_common) from [<c0043a0c>] (warn_slowpath_null+0x24/0x2c)
[  155.213202]  r8:ee49f000 r7:ee7c0004 r6:00000000 r5:ee7c0158 r4:ee7c0000
[  155.220051] [<c00439e8>] (warn_slowpath_null) from [<bf27eb70>] (xhci_setup_device+0x410/0x484 [xhci_hcd])
[  155.229816] [<bf27e760>] (xhci_setup_device [xhci_hcd]) from [<bf27ec10>] (xhci_address_device+0x14/0x18 [xhci_hcd])
[  155.240415]  r10:ee598200 r9:00000001 r8:00000002 r7:00000001 r6:00000003 r5:00000002
[  155.248363]  r4:ee49f000
[  155.250978] [<bf27ebfc>] (xhci_address_device [xhci_hcd]) from [<bf20cb94>] (hub_port_init+0x1b8/0xa9c [usbcore])
[  155.261403] [<bf20c9dc>] (hub_port_init [usbcore]) from [<bf2101e0>] (hub_event+0x738/0x1020 [usbcore])
[  155.270874]  r10:ee598200 r9:ee7c0000 r8:ee7c0038 r7:ee518800 r6:ee49f000 r5:00000001
[  155.278822]  r4:00000000
[  155.281426] [<bf20faa8>] (hub_event [usbcore]) from [<c005754c>] (process_one_work+0x128/0x340)
[  155.290196]  r10:00000000 r9:00000003 r8:00000000 r7:fedfa000 r6:eeec5400 r5:ee598314
[  155.298151]  r4:ee434380
[  155.300718] [<c0057424>] (process_one_work) from [<c00578f8>] (worker_thread+0x158/0x49c)
[  155.308963]  r10:ee434380 r9:00000003 r8:eeec5400 r7:00000008 r6:ee434398 r5:eeec5400
[  155.316913]  r4:eeec5414
[  155.319482] [<c00577a0>] (worker_thread) from [<c005cc40>] (kthread+0xdc/0xf8)
[  155.326765]  r10:00000000 r9:00000000 r8:00000000 r7:c00577a0 r6:ee434380 r5:ee4441c0
[  155.334713]  r4:00000000 r3:00000000
[  155.338341] [<c005cb64>] (kthread) from [<c000fc08>] (ret_from_fork+0x14/0x2c)
[  155.345626]  r7:00000000 r6:00000000 r5:c005cb64 r4:ee4441c0
[  155.356108] ---[ end trace a58d34c223b190e6 ]---
[  155.360783] xhci-hcd xhci-hcd.0.auto: Virt dev invalid for slot_id 0x1!
[  155.574404] xhci-hcd xhci-hcd.0.auto: xhci_setup_device
[  155.579667] ------------[ cut here ]------------

Signed-off-by: Roger Quadros <[email protected]>
Signed-off-by: Mathias Nyman <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
popcornmix pushed a commit that referenced this issue Nov 13, 2018
Increase kasan instrumented kernel stack size from 32k to 64k. Other
architectures seems to get away with just doubling kernel stack size under
kasan, but on s390 this appears to be not enough due to bigger frame size.
The particular pain point is kasan inlined checks (CONFIG_KASAN_INLINE
vs CONFIG_KASAN_OUTLINE). With inlined checks one particular case hitting
stack overflow is fs sync on xfs filesystem:

 #0 [9a0681e8]  704 bytes  check_usage at 34b1fc
 #1 [9a0684a8]  432 bytes  check_usage at 34c710
 #2 [9a068658]  1048 bytes  validate_chain at 35044a
 #3 [9a068a70]  312 bytes  __lock_acquire at 3559fe
 #4 [9a068ba8]  440 bytes  lock_acquire at 3576ee
 #5 [9a068d60]  104 bytes  _raw_spin_lock at 21b44e0
 #6 [9a068dc8]  1992 bytes  enqueue_entity at 2dbf72
 #7 [9a069590]  1496 bytes  enqueue_task_fair at 2df5f0
 #8 [9a069b68]  64 bytes  ttwu_do_activate at 28f438
 #9 [9a069ba8]  552 bytes  try_to_wake_up at 298c4c
 #10 [9a069dd0]  168 bytes  wake_up_worker at 23f97c
 #11 [9a069e78]  200 bytes  insert_work at 23fc2e
 #12 [9a069f40]  648 bytes  __queue_work at 2487c0
 #13 [9a06a1c8]  200 bytes  __queue_delayed_work at 24db28
 #14 [9a06a290]  248 bytes  mod_delayed_work_on at 24de84
 #15 [9a06a388]  24 bytes  kblockd_mod_delayed_work_on at 153e2a0
 #16 [9a06a3a0]  288 bytes  __blk_mq_delay_run_hw_queue at 158168c
 #17 [9a06a4c0]  192 bytes  blk_mq_run_hw_queue at 1581a3c
 #18 [9a06a580]  184 bytes  blk_mq_sched_insert_requests at 15a2192
 #19 [9a06a638]  1024 bytes  blk_mq_flush_plug_list at 1590f3a
 #20 [9a06aa38]  704 bytes  blk_flush_plug_list at 1555028
 #21 [9a06acf8]  320 bytes  schedule at 219e476
 #22 [9a06ae38]  760 bytes  schedule_timeout at 21b0aac
 #23 [9a06b130]  408 bytes  wait_for_common at 21a1706
 #24 [9a06b2c8]  360 bytes  xfs_buf_iowait at fa1540
 #25 [9a06b430]  256 bytes  __xfs_buf_submit at fadae6
 #26 [9a06b530]  264 bytes  xfs_buf_read_map at fae3f6
 #27 [9a06b638]  656 bytes  xfs_trans_read_buf_map at 10ac9a8
 #28 [9a06b8c8]  304 bytes  xfs_btree_kill_root at e72426
 #29 [9a06b9f8]  288 bytes  xfs_btree_lookup_get_block at e7bc5e
 #30 [9a06bb18]  624 bytes  xfs_btree_lookup at e7e1a6
 #31 [9a06bd88]  2664 bytes  xfs_alloc_ag_vextent_near at dfa070
 #32 [9a06c7f0]  144 bytes  xfs_alloc_ag_vextent at dff3ca
 #33 [9a06c880]  1128 bytes  xfs_alloc_vextent at e05fce
 #34 [9a06cce8]  584 bytes  xfs_bmap_btalloc at e58342
 #35 [9a06cf30]  1336 bytes  xfs_bmapi_write at e618de
 #36 [9a06d468]  776 bytes  xfs_iomap_write_allocate at ff678e
 #37 [9a06d770]  720 bytes  xfs_map_blocks at f82af8
 #38 [9a06da40]  928 bytes  xfs_writepage_map at f83cd6
 #39 [9a06dde0]  320 bytes  xfs_do_writepage at f85872
 #40 [9a06df20]  1320 bytes  write_cache_pages at 73dfe8
 #41 [9a06e448]  208 bytes  xfs_vm_writepages at f7f892
 #42 [9a06e518]  88 bytes  do_writepages at 73fe6a
 #43 [9a06e570]  872 bytes  __writeback_single_inode at a20cb6
 #44 [9a06e8d8]  664 bytes  writeback_sb_inodes at a23be2
 #45 [9a06eb70]  296 bytes  __writeback_inodes_wb at a242e0
 #46 [9a06ec98]  928 bytes  wb_writeback at a2500e
 #47 [9a06f038]  848 bytes  wb_do_writeback at a260ae
 #48 [9a06f388]  536 bytes  wb_workfn at a28228
 #49 [9a06f5a0]  1088 bytes  process_one_work at 24a234
 #50 [9a06f9e0]  1120 bytes  worker_thread at 24ba26
 #51 [9a06fe40]  104 bytes  kthread at 26545a
 #52 [9a06fea8]             kernel_thread_starter at 21b6b62

To be able to increase the stack size to 64k reuse LLILL instruction
in __switch_to function to load 64k - STACK_FRAME_OVERHEAD - __PT_SIZE
(65192) value as unsigned.

Reported-by: Benjamin Block <[email protected]>
Reviewed-by: Heiko Carstens <[email protected]>
Signed-off-by: Vasily Gorbik <[email protected]>
Signed-off-by: Martin Schwidefsky <[email protected]>
popcornmix pushed a commit that referenced this issue Mar 6, 2019
scsi_device_quiesce() and scsi_device_resume() are called during
system-wide suspend and resume. scsi_device_quiesce() only succeeds for
SCSI devices that are in one of the RUNNING, OFFLINE or TRANSPORT_OFFLINE
states (see also scsi_set_device_state()).  This patch avoids that the
following warning is triggered when resuming a system for which quiescing a
SCSI device failed:

WARNING: CPU: 2 PID: 11303 at drivers/scsi/scsi_lib.c:2600 scsi_device_resume+0x4f/0x58
CPU: 2 PID: 11303 Comm: kworker/u8:70 Not tainted 5.0.0-rc1+ #50
Hardware name: LENOVO 80E3/Lancer 5B2, BIOS A2CN45WW(V2.13) 08/04/2016
Workqueue: events_unbound async_run_entry_fn
Call Trace:
 scsi_dev_type_resume+0x2e/0x60
 async_run_entry_fn+0x32/0xd8
 process_one_work+0x1f4/0x420
 worker_thread+0x28/0x3c0
 kthread+0x118/0x130
 ret_from_fork+0x22/0x40

Cc: Przemek Socha <[email protected]>
Reported-by: Przemek Socha <[email protected]>
Fixes: 3a0a529 ("block, scsi: Make SCSI quiesce and resume work reliably") # v4.15
Signed-off-by: Bart Van Assche <[email protected]>
Signed-off-by: Martin K. Petersen <[email protected]>
popcornmix pushed a commit that referenced this issue Apr 23, 2019
[ Upstream commit 388b4e6 ]

scsi_device_quiesce() and scsi_device_resume() are called during
system-wide suspend and resume. scsi_device_quiesce() only succeeds for
SCSI devices that are in one of the RUNNING, OFFLINE or TRANSPORT_OFFLINE
states (see also scsi_set_device_state()).  This patch avoids that the
following warning is triggered when resuming a system for which quiescing a
SCSI device failed:

WARNING: CPU: 2 PID: 11303 at drivers/scsi/scsi_lib.c:2600 scsi_device_resume+0x4f/0x58
CPU: 2 PID: 11303 Comm: kworker/u8:70 Not tainted 5.0.0-rc1+ #50
Hardware name: LENOVO 80E3/Lancer 5B2, BIOS A2CN45WW(V2.13) 08/04/2016
Workqueue: events_unbound async_run_entry_fn
Call Trace:
 scsi_dev_type_resume+0x2e/0x60
 async_run_entry_fn+0x32/0xd8
 process_one_work+0x1f4/0x420
 worker_thread+0x28/0x3c0
 kthread+0x118/0x130
 ret_from_fork+0x22/0x40

Cc: Przemek Socha <[email protected]>
Reported-by: Przemek Socha <[email protected]>
Fixes: 3a0a529 ("block, scsi: Make SCSI quiesce and resume work reliably") # v4.15
Signed-off-by: Bart Van Assche <[email protected]>
Signed-off-by: Martin K. Petersen <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
skullandbones pushed a commit to skullandbones/linux that referenced this issue Jul 29, 2019
[ Upstream commit 3f167e1 ]

ipv4_pdp_add() is called in RCU read-side critical section.
So GFP_KERNEL should not be used in the function.
This patch make ipv4_pdp_add() to use GFP_ATOMIC instead of GFP_KERNEL.

Test commands:
gtp-link add gtp1 &
gtp-tunnel add gtp1 v1 100 200 1.1.1.1 2.2.2.2

Splat looks like:
[  130.618881] =============================
[  130.626382] WARNING: suspicious RCU usage
[  130.626994] 5.2.0-rc6+ raspberrypi#50 Not tainted
[  130.627622] -----------------------------
[  130.628223] ./include/linux/rcupdate.h:266 Illegal context switch in RCU read-side critical section!
[  130.629684]
[  130.629684] other info that might help us debug this:
[  130.629684]
[  130.631022]
[  130.631022] rcu_scheduler_active = 2, debug_locks = 1
[  130.632136] 4 locks held by gtp-tunnel/1025:
[  130.632925]  #0: 000000002b93c8b7 (cb_lock){++++}, at: genl_rcv+0x15/0x40
[  130.634159]  raspberrypi#1: 00000000f17bc999 (genl_mutex){+.+.}, at: genl_rcv_msg+0xfb/0x130
[  130.635487]  raspberrypi#2: 00000000c644ed8e (rtnl_mutex){+.+.}, at: gtp_genl_new_pdp+0x18c/0x1150 [gtp]
[  130.636936]  raspberrypi#3: 0000000007a1cde7 (rcu_read_lock){....}, at: gtp_genl_new_pdp+0x187/0x1150 [gtp]
[  130.638348]
[  130.638348] stack backtrace:
[  130.639062] CPU: 1 PID: 1025 Comm: gtp-tunnel Not tainted 5.2.0-rc6+ raspberrypi#50
[  130.641318] Call Trace:
[  130.641707]  dump_stack+0x7c/0xbb
[  130.642252]  ___might_sleep+0x2c0/0x3b0
[  130.642862]  kmem_cache_alloc_trace+0x1cd/0x2b0
[  130.643591]  gtp_genl_new_pdp+0x6c5/0x1150 [gtp]
[  130.644371]  genl_family_rcv_msg+0x63a/0x1030
[  130.645074]  ? mutex_lock_io_nested+0x1090/0x1090
[  130.645845]  ? genl_unregister_family+0x630/0x630
[  130.646592]  ? debug_show_all_locks+0x2d0/0x2d0
[  130.647293]  ? check_flags.part.40+0x440/0x440
[  130.648099]  genl_rcv_msg+0xa3/0x130
[ ... ]

Fixes: 459aa66 ("gtp: add initial driver for datapath of GPRS Tunneling Protocol (GTP-U)")
Signed-off-by: Taehee Yoo <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
skullandbones pushed a commit to skullandbones/linux that referenced this issue Jul 29, 2019
[ Upstream commit 1788b85 ]

gtp_encap_destroy() is called twice.
1. When interface is deleted.
2. When udp socket is destroyed.
either gtp->sk0 or gtp->sk1u could be freed by sock_put() in
gtp_encap_destroy(). so, when gtp_encap_destroy() is called again,
it would uses freed sk pointer.

patch makes gtp_encap_destroy() to set either gtp->sk0 or gtp->sk1u to
null. in addition, both gtp->sk0 and gtp->sk1u pointer are protected
by rtnl_lock. so, rtnl_lock() is added.

Test command:
   gtp-link add gtp1 &
   killall gtp-link
   ip link del gtp1

Splat looks like:
[   83.182767] BUG: KASAN: use-after-free in __lock_acquire+0x3a20/0x46a0
[   83.184128] Read of size 8 at addr ffff8880cc7d5360 by task ip/1008
[   83.185567] CPU: 1 PID: 1008 Comm: ip Not tainted 5.2.0-rc6+ raspberrypi#50
[   83.188469] Call Trace:
[ ... ]
[   83.200126]  lock_acquire+0x141/0x380
[   83.200575]  ? lock_sock_nested+0x3a/0xf0
[   83.201069]  _raw_spin_lock_bh+0x38/0x70
[   83.201551]  ? lock_sock_nested+0x3a/0xf0
[   83.202044]  lock_sock_nested+0x3a/0xf0
[   83.202520]  gtp_encap_destroy+0x18/0xe0 [gtp]
[   83.203065]  gtp_encap_disable.isra.14+0x13/0x50 [gtp]
[   83.203687]  gtp_dellink+0x56/0x170 [gtp]
[   83.204190]  rtnl_delete_link+0xb4/0x100
[ ... ]
[   83.236513] Allocated by task 976:
[   83.236925]  save_stack+0x19/0x80
[   83.237332]  __kasan_kmalloc.constprop.3+0xa0/0xd0
[   83.237894]  kmem_cache_alloc+0xd8/0x280
[   83.238360]  sk_prot_alloc.isra.42+0x50/0x200
[   83.238874]  sk_alloc+0x32/0x940
[   83.239264]  inet_create+0x283/0xc20
[   83.239684]  __sock_create+0x2dd/0x540
[   83.240136]  __sys_socket+0xca/0x1a0
[   83.240550]  __x64_sys_socket+0x6f/0xb0
[   83.240998]  do_syscall_64+0x9c/0x450
[   83.241466]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
[   83.242061]
[   83.242249] Freed by task 0:
[   83.242616]  save_stack+0x19/0x80
[   83.243013]  __kasan_slab_free+0x111/0x150
[   83.243498]  kmem_cache_free+0x89/0x250
[   83.244444]  __sk_destruct+0x38f/0x5a0
[   83.245366]  rcu_core+0x7e9/0x1c20
[   83.245766]  __do_softirq+0x213/0x8fa

Fixes: 1e3a3ab ("gtp: make GTP sockets in gtp_newlink optional")
Signed-off-by: Taehee Yoo <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
skullandbones pushed a commit to skullandbones/linux that referenced this issue Jul 29, 2019
[ Upstream commit a2bed90 ]

Current gtp_newlink() could be called after unregister_pernet_subsys().
gtp_newlink() uses gtp_net but it can be destroyed by
unregister_pernet_subsys().
So unregister_pernet_subsys() should be called after
rtnl_link_unregister().

Test commands:
   #SHELL 1
   while :
   do
	   for i in {1..5}
	   do
		./gtp-link add gtp$i &
	   done
	   killall gtp-link
   done

   #SHELL 2
   while :
   do
	modprobe -rv gtp
   done

Splat looks like:
[  753.176631] BUG: KASAN: use-after-free in gtp_newlink+0x9b4/0xa5c [gtp]
[  753.177722] Read of size 8 at addr ffff8880d48f2458 by task gtp-link/7126
[  753.179082] CPU: 0 PID: 7126 Comm: gtp-link Tainted: G        W         5.2.0-rc6+ raspberrypi#50
[  753.185801] Call Trace:
[  753.186264]  dump_stack+0x7c/0xbb
[  753.186863]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.187583]  print_address_description+0xc7/0x240
[  753.188382]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.189097]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.189846]  __kasan_report+0x12a/0x16f
[  753.190542]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.191298]  kasan_report+0xe/0x20
[  753.191893]  gtp_newlink+0x9b4/0xa5c [gtp]
[  753.192580]  ? __netlink_ns_capable+0xc3/0xf0
[  753.193370]  __rtnl_newlink+0xb9f/0x11b0
[ ... ]
[  753.241201] Allocated by task 7186:
[  753.241844]  save_stack+0x19/0x80
[  753.242399]  __kasan_kmalloc.constprop.3+0xa0/0xd0
[  753.243192]  __kmalloc+0x13e/0x300
[  753.243764]  ops_init+0xd6/0x350
[  753.244314]  register_pernet_operations+0x249/0x6f0
[ ... ]
[  753.251770] Freed by task 7178:
[  753.252288]  save_stack+0x19/0x80
[  753.252833]  __kasan_slab_free+0x111/0x150
[  753.253962]  kfree+0xc7/0x280
[  753.254509]  ops_free_list.part.11+0x1c4/0x2d0
[  753.255241]  unregister_pernet_operations+0x262/0x390
[ ... ]
[  753.285883] list_add corruption. next->prev should be prev (ffff8880d48f2458), but was ffff8880d497d878. (next.
[  753.287241] ------------[ cut here ]------------
[  753.287794] kernel BUG at lib/list_debug.c:25!
[  753.288364] invalid opcode: 0000 [raspberrypi#1] SMP DEBUG_PAGEALLOC KASAN PTI
[  753.289099] CPU: 0 PID: 7126 Comm: gtp-link Tainted: G    B   W         5.2.0-rc6+ raspberrypi#50
[  753.291036] RIP: 0010:__list_add_valid+0x74/0xd0
[  753.291589] Code: 48 39 da 75 27 48 39 f5 74 36 48 39 dd 74 31 48 83 c4 08 b8 01 00 00 00 5b 5d c3 48 89 d9 48b
[  753.293779] RSP: 0018:ffff8880cae8f398 EFLAGS: 00010286
[  753.294401] RAX: 0000000000000075 RBX: ffff8880d497d878 RCX: 0000000000000000
[  753.296260] RDX: 0000000000000075 RSI: 0000000000000008 RDI: ffffed10195d1e69
[  753.297070] RBP: ffff8880cd250ae0 R08: ffffed101b4bff21 R09: ffffed101b4bff21
[  753.297899] R10: 0000000000000001 R11: ffffed101b4bff20 R12: ffff8880d497d878
[  753.298703] R13: 0000000000000000 R14: ffff8880cd250ae0 R15: ffff8880d48f2458
[  753.299564] FS:  00007f5f79805740(0000) GS:ffff8880da400000(0000) knlGS:0000000000000000
[  753.300533] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  753.301231] CR2: 00007fe8c7ef4f10 CR3: 00000000b71a6006 CR4: 00000000000606f0
[  753.302183] Call Trace:
[  753.302530]  gtp_newlink+0x5f6/0xa5c [gtp]
[  753.303037]  ? __netlink_ns_capable+0xc3/0xf0
[  753.303576]  __rtnl_newlink+0xb9f/0x11b0
[  753.304092]  ? rtnl_link_unregister+0x230/0x230

Fixes: 459aa66 ("gtp: add initial driver for datapath of GPRS Tunneling Protocol (GTP-U)")
Signed-off-by: Taehee Yoo <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Jul 31, 2019
[ Upstream commit 3f167e1 ]

ipv4_pdp_add() is called in RCU read-side critical section.
So GFP_KERNEL should not be used in the function.
This patch make ipv4_pdp_add() to use GFP_ATOMIC instead of GFP_KERNEL.

Test commands:
gtp-link add gtp1 &
gtp-tunnel add gtp1 v1 100 200 1.1.1.1 2.2.2.2

Splat looks like:
[  130.618881] =============================
[  130.626382] WARNING: suspicious RCU usage
[  130.626994] 5.2.0-rc6+ #50 Not tainted
[  130.627622] -----------------------------
[  130.628223] ./include/linux/rcupdate.h:266 Illegal context switch in RCU read-side critical section!
[  130.629684]
[  130.629684] other info that might help us debug this:
[  130.629684]
[  130.631022]
[  130.631022] rcu_scheduler_active = 2, debug_locks = 1
[  130.632136] 4 locks held by gtp-tunnel/1025:
[  130.632925]  #0: 000000002b93c8b7 (cb_lock){++++}, at: genl_rcv+0x15/0x40
[  130.634159]  #1: 00000000f17bc999 (genl_mutex){+.+.}, at: genl_rcv_msg+0xfb/0x130
[  130.635487]  #2: 00000000c644ed8e (rtnl_mutex){+.+.}, at: gtp_genl_new_pdp+0x18c/0x1150 [gtp]
[  130.636936]  #3: 0000000007a1cde7 (rcu_read_lock){....}, at: gtp_genl_new_pdp+0x187/0x1150 [gtp]
[  130.638348]
[  130.638348] stack backtrace:
[  130.639062] CPU: 1 PID: 1025 Comm: gtp-tunnel Not tainted 5.2.0-rc6+ #50
[  130.641318] Call Trace:
[  130.641707]  dump_stack+0x7c/0xbb
[  130.642252]  ___might_sleep+0x2c0/0x3b0
[  130.642862]  kmem_cache_alloc_trace+0x1cd/0x2b0
[  130.643591]  gtp_genl_new_pdp+0x6c5/0x1150 [gtp]
[  130.644371]  genl_family_rcv_msg+0x63a/0x1030
[  130.645074]  ? mutex_lock_io_nested+0x1090/0x1090
[  130.645845]  ? genl_unregister_family+0x630/0x630
[  130.646592]  ? debug_show_all_locks+0x2d0/0x2d0
[  130.647293]  ? check_flags.part.40+0x440/0x440
[  130.648099]  genl_rcv_msg+0xa3/0x130
[ ... ]

Fixes: 459aa66 ("gtp: add initial driver for datapath of GPRS Tunneling Protocol (GTP-U)")
Signed-off-by: Taehee Yoo <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Jul 31, 2019
[ Upstream commit 1788b85 ]

gtp_encap_destroy() is called twice.
1. When interface is deleted.
2. When udp socket is destroyed.
either gtp->sk0 or gtp->sk1u could be freed by sock_put() in
gtp_encap_destroy(). so, when gtp_encap_destroy() is called again,
it would uses freed sk pointer.

patch makes gtp_encap_destroy() to set either gtp->sk0 or gtp->sk1u to
null. in addition, both gtp->sk0 and gtp->sk1u pointer are protected
by rtnl_lock. so, rtnl_lock() is added.

Test command:
   gtp-link add gtp1 &
   killall gtp-link
   ip link del gtp1

Splat looks like:
[   83.182767] BUG: KASAN: use-after-free in __lock_acquire+0x3a20/0x46a0
[   83.184128] Read of size 8 at addr ffff8880cc7d5360 by task ip/1008
[   83.185567] CPU: 1 PID: 1008 Comm: ip Not tainted 5.2.0-rc6+ #50
[   83.188469] Call Trace:
[ ... ]
[   83.200126]  lock_acquire+0x141/0x380
[   83.200575]  ? lock_sock_nested+0x3a/0xf0
[   83.201069]  _raw_spin_lock_bh+0x38/0x70
[   83.201551]  ? lock_sock_nested+0x3a/0xf0
[   83.202044]  lock_sock_nested+0x3a/0xf0
[   83.202520]  gtp_encap_destroy+0x18/0xe0 [gtp]
[   83.203065]  gtp_encap_disable.isra.14+0x13/0x50 [gtp]
[   83.203687]  gtp_dellink+0x56/0x170 [gtp]
[   83.204190]  rtnl_delete_link+0xb4/0x100
[ ... ]
[   83.236513] Allocated by task 976:
[   83.236925]  save_stack+0x19/0x80
[   83.237332]  __kasan_kmalloc.constprop.3+0xa0/0xd0
[   83.237894]  kmem_cache_alloc+0xd8/0x280
[   83.238360]  sk_prot_alloc.isra.42+0x50/0x200
[   83.238874]  sk_alloc+0x32/0x940
[   83.239264]  inet_create+0x283/0xc20
[   83.239684]  __sock_create+0x2dd/0x540
[   83.240136]  __sys_socket+0xca/0x1a0
[   83.240550]  __x64_sys_socket+0x6f/0xb0
[   83.240998]  do_syscall_64+0x9c/0x450
[   83.241466]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
[   83.242061]
[   83.242249] Freed by task 0:
[   83.242616]  save_stack+0x19/0x80
[   83.243013]  __kasan_slab_free+0x111/0x150
[   83.243498]  kmem_cache_free+0x89/0x250
[   83.244444]  __sk_destruct+0x38f/0x5a0
[   83.245366]  rcu_core+0x7e9/0x1c20
[   83.245766]  __do_softirq+0x213/0x8fa

Fixes: 1e3a3ab ("gtp: make GTP sockets in gtp_newlink optional")
Signed-off-by: Taehee Yoo <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Jul 31, 2019
[ Upstream commit a2bed90 ]

Current gtp_newlink() could be called after unregister_pernet_subsys().
gtp_newlink() uses gtp_net but it can be destroyed by
unregister_pernet_subsys().
So unregister_pernet_subsys() should be called after
rtnl_link_unregister().

Test commands:
   #SHELL 1
   while :
   do
	   for i in {1..5}
	   do
		./gtp-link add gtp$i &
	   done
	   killall gtp-link
   done

   #SHELL 2
   while :
   do
	modprobe -rv gtp
   done

Splat looks like:
[  753.176631] BUG: KASAN: use-after-free in gtp_newlink+0x9b4/0xa5c [gtp]
[  753.177722] Read of size 8 at addr ffff8880d48f2458 by task gtp-link/7126
[  753.179082] CPU: 0 PID: 7126 Comm: gtp-link Tainted: G        W         5.2.0-rc6+ #50
[  753.185801] Call Trace:
[  753.186264]  dump_stack+0x7c/0xbb
[  753.186863]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.187583]  print_address_description+0xc7/0x240
[  753.188382]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.189097]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.189846]  __kasan_report+0x12a/0x16f
[  753.190542]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.191298]  kasan_report+0xe/0x20
[  753.191893]  gtp_newlink+0x9b4/0xa5c [gtp]
[  753.192580]  ? __netlink_ns_capable+0xc3/0xf0
[  753.193370]  __rtnl_newlink+0xb9f/0x11b0
[ ... ]
[  753.241201] Allocated by task 7186:
[  753.241844]  save_stack+0x19/0x80
[  753.242399]  __kasan_kmalloc.constprop.3+0xa0/0xd0
[  753.243192]  __kmalloc+0x13e/0x300
[  753.243764]  ops_init+0xd6/0x350
[  753.244314]  register_pernet_operations+0x249/0x6f0
[ ... ]
[  753.251770] Freed by task 7178:
[  753.252288]  save_stack+0x19/0x80
[  753.252833]  __kasan_slab_free+0x111/0x150
[  753.253962]  kfree+0xc7/0x280
[  753.254509]  ops_free_list.part.11+0x1c4/0x2d0
[  753.255241]  unregister_pernet_operations+0x262/0x390
[ ... ]
[  753.285883] list_add corruption. next->prev should be prev (ffff8880d48f2458), but was ffff8880d497d878. (next.
[  753.287241] ------------[ cut here ]------------
[  753.287794] kernel BUG at lib/list_debug.c:25!
[  753.288364] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI
[  753.289099] CPU: 0 PID: 7126 Comm: gtp-link Tainted: G    B   W         5.2.0-rc6+ #50
[  753.291036] RIP: 0010:__list_add_valid+0x74/0xd0
[  753.291589] Code: 48 39 da 75 27 48 39 f5 74 36 48 39 dd 74 31 48 83 c4 08 b8 01 00 00 00 5b 5d c3 48 89 d9 48b
[  753.293779] RSP: 0018:ffff8880cae8f398 EFLAGS: 00010286
[  753.294401] RAX: 0000000000000075 RBX: ffff8880d497d878 RCX: 0000000000000000
[  753.296260] RDX: 0000000000000075 RSI: 0000000000000008 RDI: ffffed10195d1e69
[  753.297070] RBP: ffff8880cd250ae0 R08: ffffed101b4bff21 R09: ffffed101b4bff21
[  753.297899] R10: 0000000000000001 R11: ffffed101b4bff20 R12: ffff8880d497d878
[  753.298703] R13: 0000000000000000 R14: ffff8880cd250ae0 R15: ffff8880d48f2458
[  753.299564] FS:  00007f5f79805740(0000) GS:ffff8880da400000(0000) knlGS:0000000000000000
[  753.300533] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  753.301231] CR2: 00007fe8c7ef4f10 CR3: 00000000b71a6006 CR4: 00000000000606f0
[  753.302183] Call Trace:
[  753.302530]  gtp_newlink+0x5f6/0xa5c [gtp]
[  753.303037]  ? __netlink_ns_capable+0xc3/0xf0
[  753.303576]  __rtnl_newlink+0xb9f/0x11b0
[  753.304092]  ? rtnl_link_unregister+0x230/0x230

Fixes: 459aa66 ("gtp: add initial driver for datapath of GPRS Tunneling Protocol (GTP-U)")
Signed-off-by: Taehee Yoo <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Jul 31, 2019
[ Upstream commit 3f167e1 ]

ipv4_pdp_add() is called in RCU read-side critical section.
So GFP_KERNEL should not be used in the function.
This patch make ipv4_pdp_add() to use GFP_ATOMIC instead of GFP_KERNEL.

Test commands:
gtp-link add gtp1 &
gtp-tunnel add gtp1 v1 100 200 1.1.1.1 2.2.2.2

Splat looks like:
[  130.618881] =============================
[  130.626382] WARNING: suspicious RCU usage
[  130.626994] 5.2.0-rc6+ #50 Not tainted
[  130.627622] -----------------------------
[  130.628223] ./include/linux/rcupdate.h:266 Illegal context switch in RCU read-side critical section!
[  130.629684]
[  130.629684] other info that might help us debug this:
[  130.629684]
[  130.631022]
[  130.631022] rcu_scheduler_active = 2, debug_locks = 1
[  130.632136] 4 locks held by gtp-tunnel/1025:
[  130.632925]  #0: 000000002b93c8b7 (cb_lock){++++}, at: genl_rcv+0x15/0x40
[  130.634159]  #1: 00000000f17bc999 (genl_mutex){+.+.}, at: genl_rcv_msg+0xfb/0x130
[  130.635487]  #2: 00000000c644ed8e (rtnl_mutex){+.+.}, at: gtp_genl_new_pdp+0x18c/0x1150 [gtp]
[  130.636936]  #3: 0000000007a1cde7 (rcu_read_lock){....}, at: gtp_genl_new_pdp+0x187/0x1150 [gtp]
[  130.638348]
[  130.638348] stack backtrace:
[  130.639062] CPU: 1 PID: 1025 Comm: gtp-tunnel Not tainted 5.2.0-rc6+ #50
[  130.641318] Call Trace:
[  130.641707]  dump_stack+0x7c/0xbb
[  130.642252]  ___might_sleep+0x2c0/0x3b0
[  130.642862]  kmem_cache_alloc_trace+0x1cd/0x2b0
[  130.643591]  gtp_genl_new_pdp+0x6c5/0x1150 [gtp]
[  130.644371]  genl_family_rcv_msg+0x63a/0x1030
[  130.645074]  ? mutex_lock_io_nested+0x1090/0x1090
[  130.645845]  ? genl_unregister_family+0x630/0x630
[  130.646592]  ? debug_show_all_locks+0x2d0/0x2d0
[  130.647293]  ? check_flags.part.40+0x440/0x440
[  130.648099]  genl_rcv_msg+0xa3/0x130
[ ... ]

Fixes: 459aa66 ("gtp: add initial driver for datapath of GPRS Tunneling Protocol (GTP-U)")
Signed-off-by: Taehee Yoo <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Jul 31, 2019
[ Upstream commit 1788b85 ]

gtp_encap_destroy() is called twice.
1. When interface is deleted.
2. When udp socket is destroyed.
either gtp->sk0 or gtp->sk1u could be freed by sock_put() in
gtp_encap_destroy(). so, when gtp_encap_destroy() is called again,
it would uses freed sk pointer.

patch makes gtp_encap_destroy() to set either gtp->sk0 or gtp->sk1u to
null. in addition, both gtp->sk0 and gtp->sk1u pointer are protected
by rtnl_lock. so, rtnl_lock() is added.

Test command:
   gtp-link add gtp1 &
   killall gtp-link
   ip link del gtp1

Splat looks like:
[   83.182767] BUG: KASAN: use-after-free in __lock_acquire+0x3a20/0x46a0
[   83.184128] Read of size 8 at addr ffff8880cc7d5360 by task ip/1008
[   83.185567] CPU: 1 PID: 1008 Comm: ip Not tainted 5.2.0-rc6+ #50
[   83.188469] Call Trace:
[ ... ]
[   83.200126]  lock_acquire+0x141/0x380
[   83.200575]  ? lock_sock_nested+0x3a/0xf0
[   83.201069]  _raw_spin_lock_bh+0x38/0x70
[   83.201551]  ? lock_sock_nested+0x3a/0xf0
[   83.202044]  lock_sock_nested+0x3a/0xf0
[   83.202520]  gtp_encap_destroy+0x18/0xe0 [gtp]
[   83.203065]  gtp_encap_disable.isra.14+0x13/0x50 [gtp]
[   83.203687]  gtp_dellink+0x56/0x170 [gtp]
[   83.204190]  rtnl_delete_link+0xb4/0x100
[ ... ]
[   83.236513] Allocated by task 976:
[   83.236925]  save_stack+0x19/0x80
[   83.237332]  __kasan_kmalloc.constprop.3+0xa0/0xd0
[   83.237894]  kmem_cache_alloc+0xd8/0x280
[   83.238360]  sk_prot_alloc.isra.42+0x50/0x200
[   83.238874]  sk_alloc+0x32/0x940
[   83.239264]  inet_create+0x283/0xc20
[   83.239684]  __sock_create+0x2dd/0x540
[   83.240136]  __sys_socket+0xca/0x1a0
[   83.240550]  __x64_sys_socket+0x6f/0xb0
[   83.240998]  do_syscall_64+0x9c/0x450
[   83.241466]  entry_SYSCALL_64_after_hwframe+0x49/0xbe
[   83.242061]
[   83.242249] Freed by task 0:
[   83.242616]  save_stack+0x19/0x80
[   83.243013]  __kasan_slab_free+0x111/0x150
[   83.243498]  kmem_cache_free+0x89/0x250
[   83.244444]  __sk_destruct+0x38f/0x5a0
[   83.245366]  rcu_core+0x7e9/0x1c20
[   83.245766]  __do_softirq+0x213/0x8fa

Fixes: 1e3a3ab ("gtp: make GTP sockets in gtp_newlink optional")
Signed-off-by: Taehee Yoo <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Jul 31, 2019
[ Upstream commit a2bed90 ]

Current gtp_newlink() could be called after unregister_pernet_subsys().
gtp_newlink() uses gtp_net but it can be destroyed by
unregister_pernet_subsys().
So unregister_pernet_subsys() should be called after
rtnl_link_unregister().

Test commands:
   #SHELL 1
   while :
   do
	   for i in {1..5}
	   do
		./gtp-link add gtp$i &
	   done
	   killall gtp-link
   done

   #SHELL 2
   while :
   do
	modprobe -rv gtp
   done

Splat looks like:
[  753.176631] BUG: KASAN: use-after-free in gtp_newlink+0x9b4/0xa5c [gtp]
[  753.177722] Read of size 8 at addr ffff8880d48f2458 by task gtp-link/7126
[  753.179082] CPU: 0 PID: 7126 Comm: gtp-link Tainted: G        W         5.2.0-rc6+ #50
[  753.185801] Call Trace:
[  753.186264]  dump_stack+0x7c/0xbb
[  753.186863]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.187583]  print_address_description+0xc7/0x240
[  753.188382]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.189097]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.189846]  __kasan_report+0x12a/0x16f
[  753.190542]  ? gtp_newlink+0x9b4/0xa5c [gtp]
[  753.191298]  kasan_report+0xe/0x20
[  753.191893]  gtp_newlink+0x9b4/0xa5c [gtp]
[  753.192580]  ? __netlink_ns_capable+0xc3/0xf0
[  753.193370]  __rtnl_newlink+0xb9f/0x11b0
[ ... ]
[  753.241201] Allocated by task 7186:
[  753.241844]  save_stack+0x19/0x80
[  753.242399]  __kasan_kmalloc.constprop.3+0xa0/0xd0
[  753.243192]  __kmalloc+0x13e/0x300
[  753.243764]  ops_init+0xd6/0x350
[  753.244314]  register_pernet_operations+0x249/0x6f0
[ ... ]
[  753.251770] Freed by task 7178:
[  753.252288]  save_stack+0x19/0x80
[  753.252833]  __kasan_slab_free+0x111/0x150
[  753.253962]  kfree+0xc7/0x280
[  753.254509]  ops_free_list.part.11+0x1c4/0x2d0
[  753.255241]  unregister_pernet_operations+0x262/0x390
[ ... ]
[  753.285883] list_add corruption. next->prev should be prev (ffff8880d48f2458), but was ffff8880d497d878. (next.
[  753.287241] ------------[ cut here ]------------
[  753.287794] kernel BUG at lib/list_debug.c:25!
[  753.288364] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN PTI
[  753.289099] CPU: 0 PID: 7126 Comm: gtp-link Tainted: G    B   W         5.2.0-rc6+ #50
[  753.291036] RIP: 0010:__list_add_valid+0x74/0xd0
[  753.291589] Code: 48 39 da 75 27 48 39 f5 74 36 48 39 dd 74 31 48 83 c4 08 b8 01 00 00 00 5b 5d c3 48 89 d9 48b
[  753.293779] RSP: 0018:ffff8880cae8f398 EFLAGS: 00010286
[  753.294401] RAX: 0000000000000075 RBX: ffff8880d497d878 RCX: 0000000000000000
[  753.296260] RDX: 0000000000000075 RSI: 0000000000000008 RDI: ffffed10195d1e69
[  753.297070] RBP: ffff8880cd250ae0 R08: ffffed101b4bff21 R09: ffffed101b4bff21
[  753.297899] R10: 0000000000000001 R11: ffffed101b4bff20 R12: ffff8880d497d878
[  753.298703] R13: 0000000000000000 R14: ffff8880cd250ae0 R15: ffff8880d48f2458
[  753.299564] FS:  00007f5f79805740(0000) GS:ffff8880da400000(0000) knlGS:0000000000000000
[  753.300533] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  753.301231] CR2: 00007fe8c7ef4f10 CR3: 00000000b71a6006 CR4: 00000000000606f0
[  753.302183] Call Trace:
[  753.302530]  gtp_newlink+0x5f6/0xa5c [gtp]
[  753.303037]  ? __netlink_ns_capable+0xc3/0xf0
[  753.303576]  __rtnl_newlink+0xb9f/0x11b0
[  753.304092]  ? rtnl_link_unregister+0x230/0x230

Fixes: 459aa66 ("gtp: add initial driver for datapath of GPRS Tunneling Protocol (GTP-U)")
Signed-off-by: Taehee Yoo <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Jan 21, 2021
commit d68b295 upstream.

Commit 39d42fa ("dm crypt: add flags to optionally bypass kcryptd
workqueues") made it possible for some code paths in dm-crypt to be
executed in softirq context, when the underlying driver processes IO
requests in interrupt/softirq context.

In this case sometimes when allocating a new crypto request we may get
a stacktrace like below:

[  210.103008][    C0] BUG: sleeping function called from invalid context at mm/mempool.c:381
[  210.104746][    C0] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 2602, name: fio
[  210.106599][    C0] CPU: 0 PID: 2602 Comm: fio Tainted: G        W         5.10.0+ #50
[  210.108331][    C0] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
[  210.110212][    C0] Call Trace:
[  210.110921][    C0]  <IRQ>
[  210.111527][    C0]  dump_stack+0x7d/0xa3
[  210.112411][    C0]  ___might_sleep.cold+0x122/0x151
[  210.113527][    C0]  mempool_alloc+0x16b/0x2f0
[  210.114524][    C0]  ? __queue_work+0x515/0xde0
[  210.115553][    C0]  ? mempool_resize+0x700/0x700
[  210.116586][    C0]  ? crypt_endio+0x91/0x180
[  210.117479][    C0]  ? blk_update_request+0x757/0x1150
[  210.118513][    C0]  ? blk_mq_end_request+0x4b/0x480
[  210.119572][    C0]  ? blk_done_softirq+0x21d/0x340
[  210.120628][    C0]  ? __do_softirq+0x190/0x611
[  210.121626][    C0]  crypt_convert+0x29f9/0x4c00
[  210.122668][    C0]  ? _raw_spin_lock_irqsave+0x87/0xe0
[  210.123824][    C0]  ? kasan_set_track+0x1c/0x30
[  210.124858][    C0]  ? crypt_iv_tcw_ctr+0x4a0/0x4a0
[  210.125930][    C0]  ? kmem_cache_free+0x104/0x470
[  210.126973][    C0]  ? crypt_endio+0x91/0x180
[  210.127947][    C0]  kcryptd_crypt_read_convert+0x30e/0x420
[  210.129165][    C0]  blk_update_request+0x757/0x1150
[  210.130231][    C0]  blk_mq_end_request+0x4b/0x480
[  210.131294][    C0]  blk_done_softirq+0x21d/0x340
[  210.132332][    C0]  ? _raw_spin_lock+0x81/0xd0
[  210.133289][    C0]  ? blk_mq_stop_hw_queue+0x30/0x30
[  210.134399][    C0]  ? _raw_read_lock_irq+0x40/0x40
[  210.135458][    C0]  __do_softirq+0x190/0x611
[  210.136409][    C0]  ? handle_edge_irq+0x221/0xb60
[  210.137447][    C0]  asm_call_irq_on_stack+0x12/0x20
[  210.138507][    C0]  </IRQ>
[  210.139118][    C0]  do_softirq_own_stack+0x37/0x40
[  210.140191][    C0]  irq_exit_rcu+0x110/0x1b0
[  210.141151][    C0]  common_interrupt+0x74/0x120
[  210.142171][    C0]  asm_common_interrupt+0x1e/0x40

Fix this by allocating crypto requests with GFP_ATOMIC mask in
interrupt context.

Fixes: 39d42fa ("dm crypt: add flags to optionally bypass kcryptd workqueues")
Cc: [email protected] # v5.9+
Reported-by: Maciej S. Szmigiero <[email protected]>
Signed-off-by: Ignat Korchagin <[email protected]>
Acked-by: Mikulas Patocka <[email protected]>
Signed-off-by: Mike Snitzer <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
popcornmix pushed a commit that referenced this issue Jan 21, 2021
…tirq

commit 8abec36 upstream.

Commit 39d42fa ("dm crypt: add flags to optionally bypass kcryptd
workqueues") made it possible for some code paths in dm-crypt to be
executed in softirq context, when the underlying driver processes IO
requests in interrupt/softirq context.

When Crypto API backlogs a crypto request, dm-crypt uses
wait_for_completion to avoid sending further requests to an already
overloaded crypto driver. However, if the code is executing in softirq
context, we might get the following stacktrace:

[  210.235213][    C0] BUG: scheduling while atomic: fio/2602/0x00000102
[  210.236701][    C0] Modules linked in:
[  210.237566][    C0] CPU: 0 PID: 2602 Comm: fio Tainted: G        W         5.10.0+ #50
[  210.239292][    C0] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
[  210.241233][    C0] Call Trace:
[  210.241946][    C0]  <IRQ>
[  210.242561][    C0]  dump_stack+0x7d/0xa3
[  210.243466][    C0]  __schedule_bug.cold+0xb3/0xc2
[  210.244539][    C0]  __schedule+0x156f/0x20d0
[  210.245518][    C0]  ? io_schedule_timeout+0x140/0x140
[  210.246660][    C0]  schedule+0xd0/0x270
[  210.247541][    C0]  schedule_timeout+0x1fb/0x280
[  210.248586][    C0]  ? usleep_range+0x150/0x150
[  210.249624][    C0]  ? unpoison_range+0x3a/0x60
[  210.250632][    C0]  ? ____kasan_kmalloc.constprop.0+0x82/0xa0
[  210.251949][    C0]  ? unpoison_range+0x3a/0x60
[  210.252958][    C0]  ? __prepare_to_swait+0xa7/0x190
[  210.254067][    C0]  do_wait_for_common+0x2ab/0x370
[  210.255158][    C0]  ? usleep_range+0x150/0x150
[  210.256192][    C0]  ? bit_wait_io_timeout+0x160/0x160
[  210.257358][    C0]  ? blk_update_request+0x757/0x1150
[  210.258582][    C0]  ? _raw_spin_lock_irq+0x82/0xd0
[  210.259674][    C0]  ? _raw_read_unlock_irqrestore+0x30/0x30
[  210.260917][    C0]  wait_for_completion+0x4c/0x90
[  210.261971][    C0]  crypt_convert+0x19a6/0x4c00
[  210.263033][    C0]  ? _raw_spin_lock_irqsave+0x87/0xe0
[  210.264193][    C0]  ? kasan_set_track+0x1c/0x30
[  210.265191][    C0]  ? crypt_iv_tcw_ctr+0x4a0/0x4a0
[  210.266283][    C0]  ? kmem_cache_free+0x104/0x470
[  210.267363][    C0]  ? crypt_endio+0x91/0x180
[  210.268327][    C0]  kcryptd_crypt_read_convert+0x30e/0x420
[  210.269565][    C0]  blk_update_request+0x757/0x1150
[  210.270563][    C0]  blk_mq_end_request+0x4b/0x480
[  210.271680][    C0]  blk_done_softirq+0x21d/0x340
[  210.272775][    C0]  ? _raw_spin_lock+0x81/0xd0
[  210.273847][    C0]  ? blk_mq_stop_hw_queue+0x30/0x30
[  210.275031][    C0]  ? _raw_read_lock_irq+0x40/0x40
[  210.276182][    C0]  __do_softirq+0x190/0x611
[  210.277203][    C0]  ? handle_edge_irq+0x221/0xb60
[  210.278340][    C0]  asm_call_irq_on_stack+0x12/0x20
[  210.279514][    C0]  </IRQ>
[  210.280164][    C0]  do_softirq_own_stack+0x37/0x40
[  210.281281][    C0]  irq_exit_rcu+0x110/0x1b0
[  210.282286][    C0]  common_interrupt+0x74/0x120
[  210.283376][    C0]  asm_common_interrupt+0x1e/0x40
[  210.284496][    C0] RIP: 0010:_aesni_enc1+0x65/0xb0

Fix this by making crypt_convert function reentrant from the point of
a single bio and make dm-crypt defer further bio processing to a
workqueue, if Crypto API backlogs a request in interrupt context.

Fixes: 39d42fa ("dm crypt: add flags to optionally bypass kcryptd workqueues")
Cc: [email protected] # v5.9+
Signed-off-by: Ignat Korchagin <[email protected]>
Acked-by: Mikulas Patocka <[email protected]>
Signed-off-by: Mike Snitzer <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
popcornmix pushed a commit that referenced this issue Jan 21, 2021
…tirq

Commit 39d42fa ("dm crypt: add flags to optionally bypass kcryptd
workqueues") made it possible for some code paths in dm-crypt to be
executed in softirq context, when the underlying driver processes IO
requests in interrupt/softirq context.

When Crypto API backlogs a crypto request, dm-crypt uses
wait_for_completion to avoid sending further requests to an already
overloaded crypto driver. However, if the code is executing in softirq
context, we might get the following stacktrace:

[  210.235213][    C0] BUG: scheduling while atomic: fio/2602/0x00000102
[  210.236701][    C0] Modules linked in:
[  210.237566][    C0] CPU: 0 PID: 2602 Comm: fio Tainted: G        W         5.10.0+ #50
[  210.239292][    C0] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
[  210.241233][    C0] Call Trace:
[  210.241946][    C0]  <IRQ>
[  210.242561][    C0]  dump_stack+0x7d/0xa3
[  210.243466][    C0]  __schedule_bug.cold+0xb3/0xc2
[  210.244539][    C0]  __schedule+0x156f/0x20d0
[  210.245518][    C0]  ? io_schedule_timeout+0x140/0x140
[  210.246660][    C0]  schedule+0xd0/0x270
[  210.247541][    C0]  schedule_timeout+0x1fb/0x280
[  210.248586][    C0]  ? usleep_range+0x150/0x150
[  210.249624][    C0]  ? unpoison_range+0x3a/0x60
[  210.250632][    C0]  ? ____kasan_kmalloc.constprop.0+0x82/0xa0
[  210.251949][    C0]  ? unpoison_range+0x3a/0x60
[  210.252958][    C0]  ? __prepare_to_swait+0xa7/0x190
[  210.254067][    C0]  do_wait_for_common+0x2ab/0x370
[  210.255158][    C0]  ? usleep_range+0x150/0x150
[  210.256192][    C0]  ? bit_wait_io_timeout+0x160/0x160
[  210.257358][    C0]  ? blk_update_request+0x757/0x1150
[  210.258582][    C0]  ? _raw_spin_lock_irq+0x82/0xd0
[  210.259674][    C0]  ? _raw_read_unlock_irqrestore+0x30/0x30
[  210.260917][    C0]  wait_for_completion+0x4c/0x90
[  210.261971][    C0]  crypt_convert+0x19a6/0x4c00
[  210.263033][    C0]  ? _raw_spin_lock_irqsave+0x87/0xe0
[  210.264193][    C0]  ? kasan_set_track+0x1c/0x30
[  210.265191][    C0]  ? crypt_iv_tcw_ctr+0x4a0/0x4a0
[  210.266283][    C0]  ? kmem_cache_free+0x104/0x470
[  210.267363][    C0]  ? crypt_endio+0x91/0x180
[  210.268327][    C0]  kcryptd_crypt_read_convert+0x30e/0x420
[  210.269565][    C0]  blk_update_request+0x757/0x1150
[  210.270563][    C0]  blk_mq_end_request+0x4b/0x480
[  210.271680][    C0]  blk_done_softirq+0x21d/0x340
[  210.272775][    C0]  ? _raw_spin_lock+0x81/0xd0
[  210.273847][    C0]  ? blk_mq_stop_hw_queue+0x30/0x30
[  210.275031][    C0]  ? _raw_read_lock_irq+0x40/0x40
[  210.276182][    C0]  __do_softirq+0x190/0x611
[  210.277203][    C0]  ? handle_edge_irq+0x221/0xb60
[  210.278340][    C0]  asm_call_irq_on_stack+0x12/0x20
[  210.279514][    C0]  </IRQ>
[  210.280164][    C0]  do_softirq_own_stack+0x37/0x40
[  210.281281][    C0]  irq_exit_rcu+0x110/0x1b0
[  210.282286][    C0]  common_interrupt+0x74/0x120
[  210.283376][    C0]  asm_common_interrupt+0x1e/0x40
[  210.284496][    C0] RIP: 0010:_aesni_enc1+0x65/0xb0

Fix this by making crypt_convert function reentrant from the point of
a single bio and make dm-crypt defer further bio processing to a
workqueue, if Crypto API backlogs a request in interrupt context.

Fixes: 39d42fa ("dm crypt: add flags to optionally bypass kcryptd workqueues")
Cc: [email protected] # v5.9+
Signed-off-by: Ignat Korchagin <[email protected]>
Acked-by: Mikulas Patocka <[email protected]>
Signed-off-by: Mike Snitzer <[email protected]>
popcornmix pushed a commit that referenced this issue Jan 21, 2021
Commit 39d42fa ("dm crypt: add flags to optionally bypass kcryptd
workqueues") made it possible for some code paths in dm-crypt to be
executed in softirq context, when the underlying driver processes IO
requests in interrupt/softirq context.

In this case sometimes when allocating a new crypto request we may get
a stacktrace like below:

[  210.103008][    C0] BUG: sleeping function called from invalid context at mm/mempool.c:381
[  210.104746][    C0] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 2602, name: fio
[  210.106599][    C0] CPU: 0 PID: 2602 Comm: fio Tainted: G        W         5.10.0+ #50
[  210.108331][    C0] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
[  210.110212][    C0] Call Trace:
[  210.110921][    C0]  <IRQ>
[  210.111527][    C0]  dump_stack+0x7d/0xa3
[  210.112411][    C0]  ___might_sleep.cold+0x122/0x151
[  210.113527][    C0]  mempool_alloc+0x16b/0x2f0
[  210.114524][    C0]  ? __queue_work+0x515/0xde0
[  210.115553][    C0]  ? mempool_resize+0x700/0x700
[  210.116586][    C0]  ? crypt_endio+0x91/0x180
[  210.117479][    C0]  ? blk_update_request+0x757/0x1150
[  210.118513][    C0]  ? blk_mq_end_request+0x4b/0x480
[  210.119572][    C0]  ? blk_done_softirq+0x21d/0x340
[  210.120628][    C0]  ? __do_softirq+0x190/0x611
[  210.121626][    C0]  crypt_convert+0x29f9/0x4c00
[  210.122668][    C0]  ? _raw_spin_lock_irqsave+0x87/0xe0
[  210.123824][    C0]  ? kasan_set_track+0x1c/0x30
[  210.124858][    C0]  ? crypt_iv_tcw_ctr+0x4a0/0x4a0
[  210.125930][    C0]  ? kmem_cache_free+0x104/0x470
[  210.126973][    C0]  ? crypt_endio+0x91/0x180
[  210.127947][    C0]  kcryptd_crypt_read_convert+0x30e/0x420
[  210.129165][    C0]  blk_update_request+0x757/0x1150
[  210.130231][    C0]  blk_mq_end_request+0x4b/0x480
[  210.131294][    C0]  blk_done_softirq+0x21d/0x340
[  210.132332][    C0]  ? _raw_spin_lock+0x81/0xd0
[  210.133289][    C0]  ? blk_mq_stop_hw_queue+0x30/0x30
[  210.134399][    C0]  ? _raw_read_lock_irq+0x40/0x40
[  210.135458][    C0]  __do_softirq+0x190/0x611
[  210.136409][    C0]  ? handle_edge_irq+0x221/0xb60
[  210.137447][    C0]  asm_call_irq_on_stack+0x12/0x20
[  210.138507][    C0]  </IRQ>
[  210.139118][    C0]  do_softirq_own_stack+0x37/0x40
[  210.140191][    C0]  irq_exit_rcu+0x110/0x1b0
[  210.141151][    C0]  common_interrupt+0x74/0x120
[  210.142171][    C0]  asm_common_interrupt+0x1e/0x40

Fix this by allocating crypto requests with GFP_ATOMIC mask in
interrupt context.

Fixes: 39d42fa ("dm crypt: add flags to optionally bypass kcryptd workqueues")
Cc: [email protected] # v5.9+
Reported-by: Maciej S. Szmigiero <[email protected]>
Signed-off-by: Ignat Korchagin <[email protected]>
Acked-by: Mikulas Patocka <[email protected]>
Signed-off-by: Mike Snitzer <[email protected]>
popcornmix pushed a commit that referenced this issue May 19, 2021
[ Upstream commit 5bbf219 ]

An out of bounds write happens when setting the default power state.
KASAN sees this as:

[drm] radeon: 512M of GTT memory ready.
[drm] GART: num cpu pages 131072, num gpu pages 131072
==================================================================
BUG: KASAN: slab-out-of-bounds in
radeon_atombios_parse_power_table_1_3+0x1837/0x1998 [radeon]
Write of size 4 at addr ffff88810178d858 by task systemd-udevd/157

CPU: 0 PID: 157 Comm: systemd-udevd Not tainted 5.12.0-E620 #50
Hardware name: eMachines        eMachines E620  /Nile       , BIOS V1.03 09/30/2008
Call Trace:
 dump_stack+0xa5/0xe6
 print_address_description.constprop.0+0x18/0x239
 kasan_report+0x170/0x1a8
 radeon_atombios_parse_power_table_1_3+0x1837/0x1998 [radeon]
 radeon_atombios_get_power_modes+0x144/0x1888 [radeon]
 radeon_pm_init+0x1019/0x1904 [radeon]
 rs690_init+0x76e/0x84a [radeon]
 radeon_device_init+0x1c1a/0x21e5 [radeon]
 radeon_driver_load_kms+0xf5/0x30b [radeon]
 drm_dev_register+0x255/0x4a0 [drm]
 radeon_pci_probe+0x246/0x2f6 [radeon]
 pci_device_probe+0x1aa/0x294
 really_probe+0x30e/0x850
 driver_probe_device+0xe6/0x135
 device_driver_attach+0xc1/0xf8
 __driver_attach+0x13f/0x146
 bus_for_each_dev+0xfa/0x146
 bus_add_driver+0x2b3/0x447
 driver_register+0x242/0x2c1
 do_one_initcall+0x149/0x2fd
 do_init_module+0x1ae/0x573
 load_module+0x4dee/0x5cca
 __do_sys_finit_module+0xf1/0x140
 do_syscall_64+0x33/0x40
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Without KASAN, this will manifest later when the kernel attempts to
allocate memory that was stomped, since it collides with the inline slab
freelist pointer:

invalid opcode: 0000 [#1] SMP NOPTI
CPU: 0 PID: 781 Comm: openrc-run.sh Tainted: G        W 5.10.12-gentoo-E620 #2
Hardware name: eMachines        eMachines E620  /Nile , BIOS V1.03       09/30/2008
RIP: 0010:kfree+0x115/0x230
Code: 89 c5 e8 75 ea ff ff 48 8b 00 0f ba e0 09 72 63 e8 1f f4 ff ff 41 89 c4 48 8b 45 00 0f ba e0 10 72 0a 48 8b 45 08 a8 01 75 02 <0f> 0b 44 89 e1 48 c7 c2 00 f0 ff ff be 06 00 00 00 48 d3 e2 48 c7
RSP: 0018:ffffb42f40267e10 EFLAGS: 00010246
RAX: ffffd61280ee8d88 RBX: 0000000000000004 RCX: 000000008010000d
RDX: 4000000000000000 RSI: ffffffffba1360b0 RDI: ffffd61280ee8d80
RBP: ffffd61280ee8d80 R08: ffffffffb91bebdf R09: 0000000000000000
R10: ffff8fe2c1047ac8 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000100
FS:  00007fe80eff6b68(0000) GS:ffff8fe339c00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe80eec7bc0 CR3: 0000000038012000 CR4: 00000000000006f0
Call Trace:
 __free_fdtable+0x16/0x1f
 put_files_struct+0x81/0x9b
 do_exit+0x433/0x94d
 do_group_exit+0xa6/0xa6
 __x64_sys_exit_group+0xf/0xf
 do_syscall_64+0x33/0x40
 entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fe80ef64bea
Code: Unable to access opcode bytes at RIP 0x7fe80ef64bc0.
RSP: 002b:00007ffdb1c47528 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fe80ef64bea
RDX: 00007fe80ef64f60 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 00007fe80ee2c620 R11: 0000000000000246 R12: 00007fe80eff41e0
R13: 00000000ffffffff R14: 0000000000000024 R15: 00007fe80edf9cd0
Modules linked in: radeon(+) ath5k(+) snd_hda_codec_realtek ...

Use a valid power_state index when initializing the "flags" and "misc"
and "misc2" fields.

Bug: https://bugzilla.kernel.org/show_bug.cgi?id=211537
Reported-by: Erhard F. <[email protected]>
Fixes: a48b9b4 ("drm/radeon/kms/pm: add asic specific callbacks for getting power state (v2)")
Fixes: 79daedc ("drm/radeon/kms: minor pm cleanups")
Signed-off-by: Kees Cook <[email protected]>
Signed-off-by: Alex Deucher <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue May 19, 2021
[ Upstream commit 5bbf219 ]

An out of bounds write happens when setting the default power state.
KASAN sees this as:

[drm] radeon: 512M of GTT memory ready.
[drm] GART: num cpu pages 131072, num gpu pages 131072
==================================================================
BUG: KASAN: slab-out-of-bounds in
radeon_atombios_parse_power_table_1_3+0x1837/0x1998 [radeon]
Write of size 4 at addr ffff88810178d858 by task systemd-udevd/157

CPU: 0 PID: 157 Comm: systemd-udevd Not tainted 5.12.0-E620 #50
Hardware name: eMachines        eMachines E620  /Nile       , BIOS V1.03 09/30/2008
Call Trace:
 dump_stack+0xa5/0xe6
 print_address_description.constprop.0+0x18/0x239
 kasan_report+0x170/0x1a8
 radeon_atombios_parse_power_table_1_3+0x1837/0x1998 [radeon]
 radeon_atombios_get_power_modes+0x144/0x1888 [radeon]
 radeon_pm_init+0x1019/0x1904 [radeon]
 rs690_init+0x76e/0x84a [radeon]
 radeon_device_init+0x1c1a/0x21e5 [radeon]
 radeon_driver_load_kms+0xf5/0x30b [radeon]
 drm_dev_register+0x255/0x4a0 [drm]
 radeon_pci_probe+0x246/0x2f6 [radeon]
 pci_device_probe+0x1aa/0x294
 really_probe+0x30e/0x850
 driver_probe_device+0xe6/0x135
 device_driver_attach+0xc1/0xf8
 __driver_attach+0x13f/0x146
 bus_for_each_dev+0xfa/0x146
 bus_add_driver+0x2b3/0x447
 driver_register+0x242/0x2c1
 do_one_initcall+0x149/0x2fd
 do_init_module+0x1ae/0x573
 load_module+0x4dee/0x5cca
 __do_sys_finit_module+0xf1/0x140
 do_syscall_64+0x33/0x40
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Without KASAN, this will manifest later when the kernel attempts to
allocate memory that was stomped, since it collides with the inline slab
freelist pointer:

invalid opcode: 0000 [#1] SMP NOPTI
CPU: 0 PID: 781 Comm: openrc-run.sh Tainted: G        W 5.10.12-gentoo-E620 #2
Hardware name: eMachines        eMachines E620  /Nile , BIOS V1.03       09/30/2008
RIP: 0010:kfree+0x115/0x230
Code: 89 c5 e8 75 ea ff ff 48 8b 00 0f ba e0 09 72 63 e8 1f f4 ff ff 41 89 c4 48 8b 45 00 0f ba e0 10 72 0a 48 8b 45 08 a8 01 75 02 <0f> 0b 44 89 e1 48 c7 c2 00 f0 ff ff be 06 00 00 00 48 d3 e2 48 c7
RSP: 0018:ffffb42f40267e10 EFLAGS: 00010246
RAX: ffffd61280ee8d88 RBX: 0000000000000004 RCX: 000000008010000d
RDX: 4000000000000000 RSI: ffffffffba1360b0 RDI: ffffd61280ee8d80
RBP: ffffd61280ee8d80 R08: ffffffffb91bebdf R09: 0000000000000000
R10: ffff8fe2c1047ac8 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000100
FS:  00007fe80eff6b68(0000) GS:ffff8fe339c00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe80eec7bc0 CR3: 0000000038012000 CR4: 00000000000006f0
Call Trace:
 __free_fdtable+0x16/0x1f
 put_files_struct+0x81/0x9b
 do_exit+0x433/0x94d
 do_group_exit+0xa6/0xa6
 __x64_sys_exit_group+0xf/0xf
 do_syscall_64+0x33/0x40
 entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fe80ef64bea
Code: Unable to access opcode bytes at RIP 0x7fe80ef64bc0.
RSP: 002b:00007ffdb1c47528 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fe80ef64bea
RDX: 00007fe80ef64f60 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 00007fe80ee2c620 R11: 0000000000000246 R12: 00007fe80eff41e0
R13: 00000000ffffffff R14: 0000000000000024 R15: 00007fe80edf9cd0
Modules linked in: radeon(+) ath5k(+) snd_hda_codec_realtek ...

Use a valid power_state index when initializing the "flags" and "misc"
and "misc2" fields.

Bug: https://bugzilla.kernel.org/show_bug.cgi?id=211537
Reported-by: Erhard F. <[email protected]>
Fixes: a48b9b4 ("drm/radeon/kms/pm: add asic specific callbacks for getting power state (v2)")
Fixes: 79daedc ("drm/radeon/kms: minor pm cleanups")
Signed-off-by: Kees Cook <[email protected]>
Signed-off-by: Alex Deucher <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue May 19, 2021
[ Upstream commit 5bbf219 ]

An out of bounds write happens when setting the default power state.
KASAN sees this as:

[drm] radeon: 512M of GTT memory ready.
[drm] GART: num cpu pages 131072, num gpu pages 131072
==================================================================
BUG: KASAN: slab-out-of-bounds in
radeon_atombios_parse_power_table_1_3+0x1837/0x1998 [radeon]
Write of size 4 at addr ffff88810178d858 by task systemd-udevd/157

CPU: 0 PID: 157 Comm: systemd-udevd Not tainted 5.12.0-E620 #50
Hardware name: eMachines        eMachines E620  /Nile       , BIOS V1.03 09/30/2008
Call Trace:
 dump_stack+0xa5/0xe6
 print_address_description.constprop.0+0x18/0x239
 kasan_report+0x170/0x1a8
 radeon_atombios_parse_power_table_1_3+0x1837/0x1998 [radeon]
 radeon_atombios_get_power_modes+0x144/0x1888 [radeon]
 radeon_pm_init+0x1019/0x1904 [radeon]
 rs690_init+0x76e/0x84a [radeon]
 radeon_device_init+0x1c1a/0x21e5 [radeon]
 radeon_driver_load_kms+0xf5/0x30b [radeon]
 drm_dev_register+0x255/0x4a0 [drm]
 radeon_pci_probe+0x246/0x2f6 [radeon]
 pci_device_probe+0x1aa/0x294
 really_probe+0x30e/0x850
 driver_probe_device+0xe6/0x135
 device_driver_attach+0xc1/0xf8
 __driver_attach+0x13f/0x146
 bus_for_each_dev+0xfa/0x146
 bus_add_driver+0x2b3/0x447
 driver_register+0x242/0x2c1
 do_one_initcall+0x149/0x2fd
 do_init_module+0x1ae/0x573
 load_module+0x4dee/0x5cca
 __do_sys_finit_module+0xf1/0x140
 do_syscall_64+0x33/0x40
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Without KASAN, this will manifest later when the kernel attempts to
allocate memory that was stomped, since it collides with the inline slab
freelist pointer:

invalid opcode: 0000 [#1] SMP NOPTI
CPU: 0 PID: 781 Comm: openrc-run.sh Tainted: G        W 5.10.12-gentoo-E620 #2
Hardware name: eMachines        eMachines E620  /Nile , BIOS V1.03       09/30/2008
RIP: 0010:kfree+0x115/0x230
Code: 89 c5 e8 75 ea ff ff 48 8b 00 0f ba e0 09 72 63 e8 1f f4 ff ff 41 89 c4 48 8b 45 00 0f ba e0 10 72 0a 48 8b 45 08 a8 01 75 02 <0f> 0b 44 89 e1 48 c7 c2 00 f0 ff ff be 06 00 00 00 48 d3 e2 48 c7
RSP: 0018:ffffb42f40267e10 EFLAGS: 00010246
RAX: ffffd61280ee8d88 RBX: 0000000000000004 RCX: 000000008010000d
RDX: 4000000000000000 RSI: ffffffffba1360b0 RDI: ffffd61280ee8d80
RBP: ffffd61280ee8d80 R08: ffffffffb91bebdf R09: 0000000000000000
R10: ffff8fe2c1047ac8 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000100
FS:  00007fe80eff6b68(0000) GS:ffff8fe339c00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe80eec7bc0 CR3: 0000000038012000 CR4: 00000000000006f0
Call Trace:
 __free_fdtable+0x16/0x1f
 put_files_struct+0x81/0x9b
 do_exit+0x433/0x94d
 do_group_exit+0xa6/0xa6
 __x64_sys_exit_group+0xf/0xf
 do_syscall_64+0x33/0x40
 entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fe80ef64bea
Code: Unable to access opcode bytes at RIP 0x7fe80ef64bc0.
RSP: 002b:00007ffdb1c47528 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fe80ef64bea
RDX: 00007fe80ef64f60 RSI: 0000000000000000 RDI: 0000000000000000
RBP: 0000000000000000 R08: 0000000000000001 R09: 0000000000000000
R10: 00007fe80ee2c620 R11: 0000000000000246 R12: 00007fe80eff41e0
R13: 00000000ffffffff R14: 0000000000000024 R15: 00007fe80edf9cd0
Modules linked in: radeon(+) ath5k(+) snd_hda_codec_realtek ...

Use a valid power_state index when initializing the "flags" and "misc"
and "misc2" fields.

Bug: https://bugzilla.kernel.org/show_bug.cgi?id=211537
Reported-by: Erhard F. <[email protected]>
Fixes: a48b9b4 ("drm/radeon/kms/pm: add asic specific callbacks for getting power state (v2)")
Fixes: 79daedc ("drm/radeon/kms: minor pm cleanups")
Signed-off-by: Kees Cook <[email protected]>
Signed-off-by: Alex Deucher <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue May 25, 2021
[ Upstream commit d5027ca ]

Ritesh reported a bug [1] against UML, noting that it crashed on
startup. The backtrace shows the following (heavily redacted):

(gdb) bt
...
 #26 0x0000000060015b5d in sem_init () at ipc/sem.c:268
 #27 0x00007f89906d92f7 in ?? () from /lib/x86_64-linux-gnu/libcom_err.so.2
 #28 0x00007f8990ab8fb2 in call_init (...) at dl-init.c:72
...
 #40 0x00007f89909bf3a6 in nss_load_library (...) at nsswitch.c:359
...
 #44 0x00007f8990895e35 in _nss_compat_getgrnam_r (...) at nss_compat/compat-grp.c:486
 #45 0x00007f8990968b85 in __getgrnam_r [...]
 #46 0x00007f89909d6b77 in grantpt [...]
 #47 0x00007f8990a9394e in __GI_openpty [...]
 #48 0x00000000604a1f65 in openpty_cb (...) at arch/um/os-Linux/sigio.c:407
 #49 0x00000000604a58d0 in start_idle_thread (...) at arch/um/os-Linux/skas/process.c:598
 #50 0x0000000060004a3d in start_uml () at arch/um/kernel/skas/process.c:45
 #51 0x00000000600047b2 in linux_main (...) at arch/um/kernel/um_arch.c:334
 #52 0x000000006000574f in main (...) at arch/um/os-Linux/main.c:144

indicating that the UML function openpty_cb() calls openpty(),
which internally calls __getgrnam_r(), which causes the nsswitch
machinery to get started.

This loads, through lots of indirection that I snipped, the
libcom_err.so.2 library, which (in an unknown function, "??")
calls sem_init().

Now, of course it wants to get libpthread's sem_init(), since
it's linked against libpthread. However, the dynamic linker
looks up that symbol against the binary first, and gets the
kernel's sem_init().

Hajime Tazaki noted that "objcopy -L" can localize a symbol,
so the dynamic linker wouldn't do the lookup this way. I tried,
but for some reason that didn't seem to work.

Doing the same thing in the linker script instead does seem to
work, though I cannot entirely explain - it *also* works if I
just add "VERSION { { global: *; }; }" instead, indicating that
something else is happening that I don't really understand. It
may be that explicitly doing that marks them with some kind of
empty version, and that's different from the default.

Explicitly marking them with a version breaks kallsyms, so that
doesn't seem to be possible.

Marking all the symbols as local seems correct, and does seem
to address the issue, so do that. Also do it for static link,
nsswitch libraries could still be loaded there.

[1] https://bugs.debian.org/983379

Reported-by: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Johannes Berg <[email protected]>
Acked-By: Anton Ivanov <[email protected]>
Tested-By: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Richard Weinberger <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue May 25, 2021
[ Upstream commit d5027ca ]

Ritesh reported a bug [1] against UML, noting that it crashed on
startup. The backtrace shows the following (heavily redacted):

(gdb) bt
...
 #26 0x0000000060015b5d in sem_init () at ipc/sem.c:268
 #27 0x00007f89906d92f7 in ?? () from /lib/x86_64-linux-gnu/libcom_err.so.2
 #28 0x00007f8990ab8fb2 in call_init (...) at dl-init.c:72
...
 #40 0x00007f89909bf3a6 in nss_load_library (...) at nsswitch.c:359
...
 #44 0x00007f8990895e35 in _nss_compat_getgrnam_r (...) at nss_compat/compat-grp.c:486
 #45 0x00007f8990968b85 in __getgrnam_r [...]
 #46 0x00007f89909d6b77 in grantpt [...]
 #47 0x00007f8990a9394e in __GI_openpty [...]
 #48 0x00000000604a1f65 in openpty_cb (...) at arch/um/os-Linux/sigio.c:407
 #49 0x00000000604a58d0 in start_idle_thread (...) at arch/um/os-Linux/skas/process.c:598
 #50 0x0000000060004a3d in start_uml () at arch/um/kernel/skas/process.c:45
 #51 0x00000000600047b2 in linux_main (...) at arch/um/kernel/um_arch.c:334
 #52 0x000000006000574f in main (...) at arch/um/os-Linux/main.c:144

indicating that the UML function openpty_cb() calls openpty(),
which internally calls __getgrnam_r(), which causes the nsswitch
machinery to get started.

This loads, through lots of indirection that I snipped, the
libcom_err.so.2 library, which (in an unknown function, "??")
calls sem_init().

Now, of course it wants to get libpthread's sem_init(), since
it's linked against libpthread. However, the dynamic linker
looks up that symbol against the binary first, and gets the
kernel's sem_init().

Hajime Tazaki noted that "objcopy -L" can localize a symbol,
so the dynamic linker wouldn't do the lookup this way. I tried,
but for some reason that didn't seem to work.

Doing the same thing in the linker script instead does seem to
work, though I cannot entirely explain - it *also* works if I
just add "VERSION { { global: *; }; }" instead, indicating that
something else is happening that I don't really understand. It
may be that explicitly doing that marks them with some kind of
empty version, and that's different from the default.

Explicitly marking them with a version breaks kallsyms, so that
doesn't seem to be possible.

Marking all the symbols as local seems correct, and does seem
to address the issue, so do that. Also do it for static link,
nsswitch libraries could still be loaded there.

[1] https://bugs.debian.org/983379

Reported-by: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Johannes Berg <[email protected]>
Acked-By: Anton Ivanov <[email protected]>
Tested-By: Ritesh Raj Sarraf <[email protected]>
Signed-off-by: Richard Weinberger <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
herrnst pushed a commit to herrnst/linux-raspberrypi that referenced this issue Apr 14, 2022
commit 6c8e2a2 upstream.

Problem:
=======

Userspace might read the zero-page instead of actual data from a direct IO
read on a block device if the buffers have been called madvise(MADV_FREE)
on earlier (this is discussed below) due to a race between page reclaim on
MADV_FREE and blkdev direct IO read.

- Race condition:
  ==============

During page reclaim, the MADV_FREE page check in try_to_unmap_one() checks
if the page is not dirty, then discards its rmap PTE(s) (vs.  remap back
if the page is dirty).

However, after try_to_unmap_one() returns to shrink_page_list(), it might
keep the page _anyway_ if page_ref_freeze() fails (it expects exactly
_one_ page reference, from the isolation for page reclaim).

Well, blkdev_direct_IO() gets references for all pages, and on READ
operations it only sets them dirty _later_.

So, if MADV_FREE'd pages (i.e., not dirty) are used as buffers for direct
IO read from block devices, and page reclaim happens during
__blkdev_direct_IO[_simple]() exactly AFTER bio_iov_iter_get_pages()
returns, but BEFORE the pages are set dirty, the situation happens.

The direct IO read eventually completes.  Now, when userspace reads the
buffers, the PTE is no longer there and the page fault handler
do_anonymous_page() services that with the zero-page, NOT the data!

A synthetic reproducer is provided.

- Page faults:
  ===========

If page reclaim happens BEFORE bio_iov_iter_get_pages() the issue doesn't
happen, because that faults-in all pages as writeable, so
do_anonymous_page() sets up a new page/rmap/PTE, and that is used by
direct IO.  The userspace reads don't fault as the PTE is there (thus
zero-page is not used/setup).

But if page reclaim happens AFTER it / BEFORE setting pages dirty, the PTE
is no longer there; the subsequent page faults can't help:

The data-read from the block device probably won't generate faults due to
DMA (no MMU) but even in the case it wouldn't use DMA, that happens on
different virtual addresses (not user-mapped addresses) because `struct
bio_vec` stores `struct page` to figure addresses out (which are different
from user-mapped addresses) for the read.

Thus userspace reads (to user-mapped addresses) still fault, then
do_anonymous_page() gets another `struct page` that would address/ map to
other memory than the `struct page` used by `struct bio_vec` for the read.
(The original `struct page` is not available, since it wasn't freed, as
page_ref_freeze() failed due to more page refs.  And even if it were
available, its data cannot be trusted anymore.)

Solution:
========

One solution is to check for the expected page reference count in
try_to_unmap_one().

There should be one reference from the isolation (that is also checked in
shrink_page_list() with page_ref_freeze()) plus one or more references
from page mapping(s) (put in discard: label).  Further references mean
that rmap/PTE cannot be unmapped/nuked.

(Note: there might be more than one reference from mapping due to
fork()/clone() without CLONE_VM, which use the same `struct page` for
references, until the copy-on-write page gets copied.)

So, additional page references (e.g., from direct IO read) now prevent the
rmap/PTE from being unmapped/dropped; similarly to the page is not freed
per shrink_page_list()/page_ref_freeze()).

- Races and Barriers:
  ==================

The new check in try_to_unmap_one() should be safe in races with
bio_iov_iter_get_pages() in get_user_pages() fast and slow paths, as it's
done under the PTE lock.

The fast path doesn't take the lock, but it checks if the PTE has changed
and if so, it drops the reference and leaves the page for the slow path
(which does take that lock).

The fast path requires synchronization w/ full memory barrier: it writes
the page reference count first then it reads the PTE later, while
try_to_unmap() writes PTE first then it reads page refcount.

And a second barrier is needed, as the page dirty flag should not be read
before the page reference count (as in __remove_mapping()).  (This can be
a load memory barrier only; no writes are involved.)

Call stack/comments:

- try_to_unmap_one()
  - page_vma_mapped_walk()
    - map_pte()			# see pte_offset_map_lock():
        pte_offset_map()
        spin_lock()

  - ptep_get_and_clear()	# write PTE
  - smp_mb()			# (new barrier) GUP fast path
  - page_ref_count()		# (new check) read refcount

  - page_vma_mapped_walk_done()	# see pte_unmap_unlock():
      pte_unmap()
      spin_unlock()

- bio_iov_iter_get_pages()
  - __bio_iov_iter_get_pages()
    - iov_iter_get_pages()
      - get_user_pages_fast()
        - internal_get_user_pages_fast()

          # fast path
          - lockless_pages_from_mm()
            - gup_{pgd,p4d,pud,pmd,pte}_range()
                ptep = pte_offset_map()		# not _lock()
                pte = ptep_get_lockless(ptep)

                page = pte_page(pte)
                try_grab_compound_head(page)	# inc refcount
                                            	# (RMW/barrier
                                             	#  on success)

                if (pte_val(pte) != pte_val(*ptep)) # read PTE
                        put_compound_head(page) # dec refcount
                        			# go slow path

          # slow path
          - __gup_longterm_unlocked()
            - get_user_pages_unlocked()
              - __get_user_pages_locked()
                - __get_user_pages()
                  - follow_{page,p4d,pud,pmd}_mask()
                    - follow_page_pte()
                        ptep = pte_offset_map_lock()
                        pte = *ptep
                        page = vm_normal_page(pte)
                        try_grab_page(page)	# inc refcount
                        pte_unmap_unlock()

- Huge Pages:
  ==========

Regarding transparent hugepages, that logic shouldn't change, as MADV_FREE
(aka lazyfree) pages are PageAnon() && !PageSwapBacked()
(madvise_free_pte_range() -> mark_page_lazyfree() -> lru_lazyfree_fn())
thus should reach shrink_page_list() -> split_huge_page_to_list() before
try_to_unmap[_one](), so it deals with normal pages only.

(And in case unlikely/TTU_SPLIT_HUGE_PMD/split_huge_pmd_address() happens,
which should not or be rare, the page refcount should be greater than
mapcount: the head page is referenced by tail pages.  That also prevents
checking the head `page` then incorrectly call page_remove_rmap(subpage)
for a tail page, that isn't even in the shrink_page_list()'s page_list (an
effect of split huge pmd/pmvw), as it might happen today in this unlikely
scenario.)

MADV_FREE'd buffers:
===================

So, back to the "if MADV_FREE pages are used as buffers" note.  The case
is arguable, and subject to multiple interpretations.

The madvise(2) manual page on the MADV_FREE advice value says:

1) 'After a successful MADV_FREE ... data will be lost when
   the kernel frees the pages.'
2) 'the free operation will be canceled if the caller writes
   into the page' / 'subsequent writes ... will succeed and
   then [the] kernel cannot free those dirtied pages'
3) 'If there is no subsequent write, the kernel can free the
   pages at any time.'

Thoughts, questions, considerations... respectively:

1) Since the kernel didn't actually free the page (page_ref_freeze()
   failed), should the data not have been lost? (on userspace read.)
2) Should writes performed by the direct IO read be able to cancel
   the free operation?
   - Should the direct IO read be considered as 'the caller' too,
     as it's been requested by 'the caller'?
   - Should the bio technique to dirty pages on return to userspace
     (bio_check_pages_dirty() is called/used by __blkdev_direct_IO())
     be considered in another/special way here?
3) Should an upcoming write from a previously requested direct IO
   read be considered as a subsequent write, so the kernel should
   not free the pages? (as it's known at the time of page reclaim.)

And lastly:

Technically, the last point would seem a reasonable consideration and
balance, as the madvise(2) manual page apparently (and fairly) seem to
assume that 'writes' are memory access from the userspace process (not
explicitly considering writes from the kernel or its corner cases; again,
fairly)..  plus the kernel fix implementation for the corner case of the
largely 'non-atomic write' encompassed by a direct IO read operation, is
relatively simple; and it helps.

Reproducer:
==========

@ test.c (simplified, but works)

	#define _GNU_SOURCE
	#include <fcntl.h>
	#include <stdio.h>
	#include <unistd.h>
	#include <sys/mman.h>

	int main() {
		int fd, i;
		char *buf;

		fd = open(DEV, O_RDONLY | O_DIRECT);

		buf = mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE,
                	   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			buf[i] = 1; // init to non-zero

		madvise(buf, BUF_SIZE, MADV_FREE);

		read(fd, buf, BUF_SIZE);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			printf("%p: 0x%x\n", &buf[i], buf[i]);

		return 0;
	}

@ block/fops.c (formerly fs/block_dev.c)

	+#include <linux/swap.h>
	...
	... __blkdev_direct_IO[_simple](...)
	{
	...
	+	if (!strcmp(current->comm, "good"))
	+		shrink_all_memory(ULONG_MAX);
	+
         	ret = bio_iov_iter_get_pages(...);
	+
	+	if (!strcmp(current->comm, "bad"))
	+		shrink_all_memory(ULONG_MAX);
	...
	}

@ shell

        # NUM_PAGES=4
        # PAGE_SIZE=$(getconf PAGE_SIZE)

        # yes | dd of=test.img bs=${PAGE_SIZE} count=${NUM_PAGES}
        # DEV=$(losetup -f --show test.img)

        # gcc -DDEV=\"$DEV\" \
              -DBUF_SIZE=$((PAGE_SIZE * NUM_PAGES)) \
              -DPAGE_SIZE=${PAGE_SIZE} \
               test.c -o test

        # od -tx1 $DEV
        0000000 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a
        *
        0040000

        # mv test good
        # ./good
        0x7f7c10418000: 0x79
        0x7f7c10419000: 0x79
        0x7f7c1041a000: 0x79
        0x7f7c1041b000: 0x79

        # mv good bad
        # ./bad
        0x7fa1b8050000: 0x0
        0x7fa1b8051000: 0x0
        0x7fa1b8052000: 0x0
        0x7fa1b8053000: 0x0

Note: the issue is consistent on v5.17-rc3, but it's intermittent with the
support of MADV_FREE on v4.5 (60%-70% error; needs swap).  [wrap
do_direct_IO() in do_blockdev_direct_IO() @ fs/direct-io.c].

- v5.17-rc3:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x0

        # free | grep Swap
        Swap:             0           0           0

- v4.5:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           2702  0x0
           1298  0x79

        # swapoff -av
        swapoff /swap

        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

Ceph/TCMalloc:
=============

For documentation purposes, the use case driving the analysis/fix is Ceph
on Ubuntu 18.04, as the TCMalloc library there still uses MADV_FREE to
release unused memory to the system from the mmap'ed page heap (might be
committed back/used again; it's not munmap'ed.) - PageHeap::DecommitSpan()
-> TCMalloc_SystemRelease() -> madvise() - PageHeap::CommitSpan() ->
TCMalloc_SystemCommit() -> do nothing.

Note: TCMalloc switched back to MADV_DONTNEED a few commits after the
release in Ubuntu 18.04 (google-perftools/gperftools 2.5), so the issue
just 'disappeared' on Ceph on later Ubuntu releases but is still present
in the kernel, and can be hit by other use cases.

The observed issue seems to be the old Ceph bug #22464 [1], where checksum
mismatches are observed (and instrumentation with buffer dumps shows
zero-pages read from mmap'ed/MADV_FREE'd page ranges).

The issue in Ceph was reasonably deemed a kernel bug (comment raspberrypi#50) and
mostly worked around with a retry mechanism, but other parts of Ceph could
still hit that (rocksdb).  Anyway, it's less likely to be hit again as
TCMalloc switched out of MADV_FREE by default.

(Some kernel versions/reports from the Ceph bug, and relation with
the MADV_FREE introduction/changes; TCMalloc versions not checked.)
- 4.4 good
- 4.5 (madv_free: introduction)
- 4.9 bad
- 4.10 good? maybe a swapless system
- 4.12 (madv_free: no longer free instantly on swapless systems)
- 4.13 bad

[1] https://tracker.ceph.com/issues/22464

Thanks:
======

Several people contributed to analysis/discussions/tests/reproducers in
the first stages when drilling down on ceph/tcmalloc/linux kernel:

- Dan Hill
- Dan Streetman
- Dongdong Tao
- Gavin Guo
- Gerald Yang
- Heitor Alves de Siqueira
- Ioanna Alifieraki
- Jay Vosburgh
- Matthew Ruffell
- Ponnuvel Palaniyappan

Reviews, suggestions, corrections, comments:

- Minchan Kim
- Yu Zhao
- Huang, Ying
- John Hubbard
- Christoph Hellwig

[[email protected]: v4]
  Link: https://lkml.kernel.org/r/[email protected]: https://lkml.kernel.org/r/[email protected]

Fixes: 802a3a9 ("mm: reclaim MADV_FREE pages")
Signed-off-by: Mauricio Faria de Oliveira <[email protected]>
Reviewed-by: "Huang, Ying" <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Yu Zhao <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: Miaohe Lin <[email protected]>
Cc: Dan Hill <[email protected]>
Cc: Dan Streetman <[email protected]>
Cc: Dongdong Tao <[email protected]>
Cc: Gavin Guo <[email protected]>
Cc: Gerald Yang <[email protected]>
Cc: Heitor Alves de Siqueira <[email protected]>
Cc: Ioanna Alifieraki <[email protected]>
Cc: Jay Vosburgh <[email protected]>
Cc: Matthew Ruffell <[email protected]>
Cc: Ponnuvel Palaniyappan <[email protected]>
Cc: <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
[mfo: backport: replace folio/test_flag with page/flag equivalents;
 real Fixes: 854e9ed ("mm: support madvise(MADV_FREE)") in v4.]
Signed-off-by: Mauricio Faria de Oliveira <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Apr 19, 2022
commit 6c8e2a2 upstream.

Problem:
=======

Userspace might read the zero-page instead of actual data from a direct IO
read on a block device if the buffers have been called madvise(MADV_FREE)
on earlier (this is discussed below) due to a race between page reclaim on
MADV_FREE and blkdev direct IO read.

- Race condition:
  ==============

During page reclaim, the MADV_FREE page check in try_to_unmap_one() checks
if the page is not dirty, then discards its rmap PTE(s) (vs.  remap back
if the page is dirty).

However, after try_to_unmap_one() returns to shrink_page_list(), it might
keep the page _anyway_ if page_ref_freeze() fails (it expects exactly
_one_ page reference, from the isolation for page reclaim).

Well, blkdev_direct_IO() gets references for all pages, and on READ
operations it only sets them dirty _later_.

So, if MADV_FREE'd pages (i.e., not dirty) are used as buffers for direct
IO read from block devices, and page reclaim happens during
__blkdev_direct_IO[_simple]() exactly AFTER bio_iov_iter_get_pages()
returns, but BEFORE the pages are set dirty, the situation happens.

The direct IO read eventually completes.  Now, when userspace reads the
buffers, the PTE is no longer there and the page fault handler
do_anonymous_page() services that with the zero-page, NOT the data!

A synthetic reproducer is provided.

- Page faults:
  ===========

If page reclaim happens BEFORE bio_iov_iter_get_pages() the issue doesn't
happen, because that faults-in all pages as writeable, so
do_anonymous_page() sets up a new page/rmap/PTE, and that is used by
direct IO.  The userspace reads don't fault as the PTE is there (thus
zero-page is not used/setup).

But if page reclaim happens AFTER it / BEFORE setting pages dirty, the PTE
is no longer there; the subsequent page faults can't help:

The data-read from the block device probably won't generate faults due to
DMA (no MMU) but even in the case it wouldn't use DMA, that happens on
different virtual addresses (not user-mapped addresses) because `struct
bio_vec` stores `struct page` to figure addresses out (which are different
from user-mapped addresses) for the read.

Thus userspace reads (to user-mapped addresses) still fault, then
do_anonymous_page() gets another `struct page` that would address/ map to
other memory than the `struct page` used by `struct bio_vec` for the read.
(The original `struct page` is not available, since it wasn't freed, as
page_ref_freeze() failed due to more page refs.  And even if it were
available, its data cannot be trusted anymore.)

Solution:
========

One solution is to check for the expected page reference count in
try_to_unmap_one().

There should be one reference from the isolation (that is also checked in
shrink_page_list() with page_ref_freeze()) plus one or more references
from page mapping(s) (put in discard: label).  Further references mean
that rmap/PTE cannot be unmapped/nuked.

(Note: there might be more than one reference from mapping due to
fork()/clone() without CLONE_VM, which use the same `struct page` for
references, until the copy-on-write page gets copied.)

So, additional page references (e.g., from direct IO read) now prevent the
rmap/PTE from being unmapped/dropped; similarly to the page is not freed
per shrink_page_list()/page_ref_freeze()).

- Races and Barriers:
  ==================

The new check in try_to_unmap_one() should be safe in races with
bio_iov_iter_get_pages() in get_user_pages() fast and slow paths, as it's
done under the PTE lock.

The fast path doesn't take the lock, but it checks if the PTE has changed
and if so, it drops the reference and leaves the page for the slow path
(which does take that lock).

The fast path requires synchronization w/ full memory barrier: it writes
the page reference count first then it reads the PTE later, while
try_to_unmap() writes PTE first then it reads page refcount.

And a second barrier is needed, as the page dirty flag should not be read
before the page reference count (as in __remove_mapping()).  (This can be
a load memory barrier only; no writes are involved.)

Call stack/comments:

- try_to_unmap_one()
  - page_vma_mapped_walk()
    - map_pte()			# see pte_offset_map_lock():
        pte_offset_map()
        spin_lock()

  - ptep_get_and_clear()	# write PTE
  - smp_mb()			# (new barrier) GUP fast path
  - page_ref_count()		# (new check) read refcount

  - page_vma_mapped_walk_done()	# see pte_unmap_unlock():
      pte_unmap()
      spin_unlock()

- bio_iov_iter_get_pages()
  - __bio_iov_iter_get_pages()
    - iov_iter_get_pages()
      - get_user_pages_fast()
        - internal_get_user_pages_fast()

          # fast path
          - lockless_pages_from_mm()
            - gup_{pgd,p4d,pud,pmd,pte}_range()
                ptep = pte_offset_map()		# not _lock()
                pte = ptep_get_lockless(ptep)

                page = pte_page(pte)
                try_grab_compound_head(page)	# inc refcount
                                            	# (RMW/barrier
                                             	#  on success)

                if (pte_val(pte) != pte_val(*ptep)) # read PTE
                        put_compound_head(page) # dec refcount
                        			# go slow path

          # slow path
          - __gup_longterm_unlocked()
            - get_user_pages_unlocked()
              - __get_user_pages_locked()
                - __get_user_pages()
                  - follow_{page,p4d,pud,pmd}_mask()
                    - follow_page_pte()
                        ptep = pte_offset_map_lock()
                        pte = *ptep
                        page = vm_normal_page(pte)
                        try_grab_page(page)	# inc refcount
                        pte_unmap_unlock()

- Huge Pages:
  ==========

Regarding transparent hugepages, that logic shouldn't change, as MADV_FREE
(aka lazyfree) pages are PageAnon() && !PageSwapBacked()
(madvise_free_pte_range() -> mark_page_lazyfree() -> lru_lazyfree_fn())
thus should reach shrink_page_list() -> split_huge_page_to_list() before
try_to_unmap[_one](), so it deals with normal pages only.

(And in case unlikely/TTU_SPLIT_HUGE_PMD/split_huge_pmd_address() happens,
which should not or be rare, the page refcount should be greater than
mapcount: the head page is referenced by tail pages.  That also prevents
checking the head `page` then incorrectly call page_remove_rmap(subpage)
for a tail page, that isn't even in the shrink_page_list()'s page_list (an
effect of split huge pmd/pmvw), as it might happen today in this unlikely
scenario.)

MADV_FREE'd buffers:
===================

So, back to the "if MADV_FREE pages are used as buffers" note.  The case
is arguable, and subject to multiple interpretations.

The madvise(2) manual page on the MADV_FREE advice value says:

1) 'After a successful MADV_FREE ... data will be lost when
   the kernel frees the pages.'
2) 'the free operation will be canceled if the caller writes
   into the page' / 'subsequent writes ... will succeed and
   then [the] kernel cannot free those dirtied pages'
3) 'If there is no subsequent write, the kernel can free the
   pages at any time.'

Thoughts, questions, considerations... respectively:

1) Since the kernel didn't actually free the page (page_ref_freeze()
   failed), should the data not have been lost? (on userspace read.)
2) Should writes performed by the direct IO read be able to cancel
   the free operation?
   - Should the direct IO read be considered as 'the caller' too,
     as it's been requested by 'the caller'?
   - Should the bio technique to dirty pages on return to userspace
     (bio_check_pages_dirty() is called/used by __blkdev_direct_IO())
     be considered in another/special way here?
3) Should an upcoming write from a previously requested direct IO
   read be considered as a subsequent write, so the kernel should
   not free the pages? (as it's known at the time of page reclaim.)

And lastly:

Technically, the last point would seem a reasonable consideration and
balance, as the madvise(2) manual page apparently (and fairly) seem to
assume that 'writes' are memory access from the userspace process (not
explicitly considering writes from the kernel or its corner cases; again,
fairly)..  plus the kernel fix implementation for the corner case of the
largely 'non-atomic write' encompassed by a direct IO read operation, is
relatively simple; and it helps.

Reproducer:
==========

@ test.c (simplified, but works)

	#define _GNU_SOURCE
	#include <fcntl.h>
	#include <stdio.h>
	#include <unistd.h>
	#include <sys/mman.h>

	int main() {
		int fd, i;
		char *buf;

		fd = open(DEV, O_RDONLY | O_DIRECT);

		buf = mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE,
                	   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			buf[i] = 1; // init to non-zero

		madvise(buf, BUF_SIZE, MADV_FREE);

		read(fd, buf, BUF_SIZE);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			printf("%p: 0x%x\n", &buf[i], buf[i]);

		return 0;
	}

@ block/fops.c (formerly fs/block_dev.c)

	+#include <linux/swap.h>
	...
	... __blkdev_direct_IO[_simple](...)
	{
	...
	+	if (!strcmp(current->comm, "good"))
	+		shrink_all_memory(ULONG_MAX);
	+
         	ret = bio_iov_iter_get_pages(...);
	+
	+	if (!strcmp(current->comm, "bad"))
	+		shrink_all_memory(ULONG_MAX);
	...
	}

@ shell

        # NUM_PAGES=4
        # PAGE_SIZE=$(getconf PAGE_SIZE)

        # yes | dd of=test.img bs=${PAGE_SIZE} count=${NUM_PAGES}
        # DEV=$(losetup -f --show test.img)

        # gcc -DDEV=\"$DEV\" \
              -DBUF_SIZE=$((PAGE_SIZE * NUM_PAGES)) \
              -DPAGE_SIZE=${PAGE_SIZE} \
               test.c -o test

        # od -tx1 $DEV
        0000000 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a
        *
        0040000

        # mv test good
        # ./good
        0x7f7c10418000: 0x79
        0x7f7c10419000: 0x79
        0x7f7c1041a000: 0x79
        0x7f7c1041b000: 0x79

        # mv good bad
        # ./bad
        0x7fa1b8050000: 0x0
        0x7fa1b8051000: 0x0
        0x7fa1b8052000: 0x0
        0x7fa1b8053000: 0x0

Note: the issue is consistent on v5.17-rc3, but it's intermittent with the
support of MADV_FREE on v4.5 (60%-70% error; needs swap).  [wrap
do_direct_IO() in do_blockdev_direct_IO() @ fs/direct-io.c].

- v5.17-rc3:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x0

        # free | grep Swap
        Swap:             0           0           0

- v4.5:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           2702  0x0
           1298  0x79

        # swapoff -av
        swapoff /swap

        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

Ceph/TCMalloc:
=============

For documentation purposes, the use case driving the analysis/fix is Ceph
on Ubuntu 18.04, as the TCMalloc library there still uses MADV_FREE to
release unused memory to the system from the mmap'ed page heap (might be
committed back/used again; it's not munmap'ed.) - PageHeap::DecommitSpan()
-> TCMalloc_SystemRelease() -> madvise() - PageHeap::CommitSpan() ->
TCMalloc_SystemCommit() -> do nothing.

Note: TCMalloc switched back to MADV_DONTNEED a few commits after the
release in Ubuntu 18.04 (google-perftools/gperftools 2.5), so the issue
just 'disappeared' on Ceph on later Ubuntu releases but is still present
in the kernel, and can be hit by other use cases.

The observed issue seems to be the old Ceph bug #22464 [1], where checksum
mismatches are observed (and instrumentation with buffer dumps shows
zero-pages read from mmap'ed/MADV_FREE'd page ranges).

The issue in Ceph was reasonably deemed a kernel bug (comment #50) and
mostly worked around with a retry mechanism, but other parts of Ceph could
still hit that (rocksdb).  Anyway, it's less likely to be hit again as
TCMalloc switched out of MADV_FREE by default.

(Some kernel versions/reports from the Ceph bug, and relation with
the MADV_FREE introduction/changes; TCMalloc versions not checked.)
- 4.4 good
- 4.5 (madv_free: introduction)
- 4.9 bad
- 4.10 good? maybe a swapless system
- 4.12 (madv_free: no longer free instantly on swapless systems)
- 4.13 bad

[1] https://tracker.ceph.com/issues/22464

Thanks:
======

Several people contributed to analysis/discussions/tests/reproducers in
the first stages when drilling down on ceph/tcmalloc/linux kernel:

- Dan Hill
- Dan Streetman
- Dongdong Tao
- Gavin Guo
- Gerald Yang
- Heitor Alves de Siqueira
- Ioanna Alifieraki
- Jay Vosburgh
- Matthew Ruffell
- Ponnuvel Palaniyappan

Reviews, suggestions, corrections, comments:

- Minchan Kim
- Yu Zhao
- Huang, Ying
- John Hubbard
- Christoph Hellwig

[[email protected]: v4]
  Link: https://lkml.kernel.org/r/[email protected]: https://lkml.kernel.org/r/[email protected]

Fixes: 802a3a9 ("mm: reclaim MADV_FREE pages")
Signed-off-by: Mauricio Faria de Oliveira <[email protected]>
Reviewed-by: "Huang, Ying" <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Yu Zhao <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: Miaohe Lin <[email protected]>
Cc: Dan Hill <[email protected]>
Cc: Dan Streetman <[email protected]>
Cc: Dongdong Tao <[email protected]>
Cc: Gavin Guo <[email protected]>
Cc: Gerald Yang <[email protected]>
Cc: Heitor Alves de Siqueira <[email protected]>
Cc: Ioanna Alifieraki <[email protected]>
Cc: Jay Vosburgh <[email protected]>
Cc: Matthew Ruffell <[email protected]>
Cc: Ponnuvel Palaniyappan <[email protected]>
Cc: <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
[mfo: backport: replace folio/test_flag with page/flag equivalents;
 real Fixes: 854e9ed ("mm: support madvise(MADV_FREE)") in v4.]
Signed-off-by: Mauricio Faria de Oliveira <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Apr 19, 2022
commit 6c8e2a2 upstream.

Problem:
=======

Userspace might read the zero-page instead of actual data from a direct IO
read on a block device if the buffers have been called madvise(MADV_FREE)
on earlier (this is discussed below) due to a race between page reclaim on
MADV_FREE and blkdev direct IO read.

- Race condition:
  ==============

During page reclaim, the MADV_FREE page check in try_to_unmap_one() checks
if the page is not dirty, then discards its rmap PTE(s) (vs.  remap back
if the page is dirty).

However, after try_to_unmap_one() returns to shrink_page_list(), it might
keep the page _anyway_ if page_ref_freeze() fails (it expects exactly
_one_ page reference, from the isolation for page reclaim).

Well, blkdev_direct_IO() gets references for all pages, and on READ
operations it only sets them dirty _later_.

So, if MADV_FREE'd pages (i.e., not dirty) are used as buffers for direct
IO read from block devices, and page reclaim happens during
__blkdev_direct_IO[_simple]() exactly AFTER bio_iov_iter_get_pages()
returns, but BEFORE the pages are set dirty, the situation happens.

The direct IO read eventually completes.  Now, when userspace reads the
buffers, the PTE is no longer there and the page fault handler
do_anonymous_page() services that with the zero-page, NOT the data!

A synthetic reproducer is provided.

- Page faults:
  ===========

If page reclaim happens BEFORE bio_iov_iter_get_pages() the issue doesn't
happen, because that faults-in all pages as writeable, so
do_anonymous_page() sets up a new page/rmap/PTE, and that is used by
direct IO.  The userspace reads don't fault as the PTE is there (thus
zero-page is not used/setup).

But if page reclaim happens AFTER it / BEFORE setting pages dirty, the PTE
is no longer there; the subsequent page faults can't help:

The data-read from the block device probably won't generate faults due to
DMA (no MMU) but even in the case it wouldn't use DMA, that happens on
different virtual addresses (not user-mapped addresses) because `struct
bio_vec` stores `struct page` to figure addresses out (which are different
from user-mapped addresses) for the read.

Thus userspace reads (to user-mapped addresses) still fault, then
do_anonymous_page() gets another `struct page` that would address/ map to
other memory than the `struct page` used by `struct bio_vec` for the read.
(The original `struct page` is not available, since it wasn't freed, as
page_ref_freeze() failed due to more page refs.  And even if it were
available, its data cannot be trusted anymore.)

Solution:
========

One solution is to check for the expected page reference count in
try_to_unmap_one().

There should be one reference from the isolation (that is also checked in
shrink_page_list() with page_ref_freeze()) plus one or more references
from page mapping(s) (put in discard: label).  Further references mean
that rmap/PTE cannot be unmapped/nuked.

(Note: there might be more than one reference from mapping due to
fork()/clone() without CLONE_VM, which use the same `struct page` for
references, until the copy-on-write page gets copied.)

So, additional page references (e.g., from direct IO read) now prevent the
rmap/PTE from being unmapped/dropped; similarly to the page is not freed
per shrink_page_list()/page_ref_freeze()).

- Races and Barriers:
  ==================

The new check in try_to_unmap_one() should be safe in races with
bio_iov_iter_get_pages() in get_user_pages() fast and slow paths, as it's
done under the PTE lock.

The fast path doesn't take the lock, but it checks if the PTE has changed
and if so, it drops the reference and leaves the page for the slow path
(which does take that lock).

The fast path requires synchronization w/ full memory barrier: it writes
the page reference count first then it reads the PTE later, while
try_to_unmap() writes PTE first then it reads page refcount.

And a second barrier is needed, as the page dirty flag should not be read
before the page reference count (as in __remove_mapping()).  (This can be
a load memory barrier only; no writes are involved.)

Call stack/comments:

- try_to_unmap_one()
  - page_vma_mapped_walk()
    - map_pte()			# see pte_offset_map_lock():
        pte_offset_map()
        spin_lock()

  - ptep_get_and_clear()	# write PTE
  - smp_mb()			# (new barrier) GUP fast path
  - page_ref_count()		# (new check) read refcount

  - page_vma_mapped_walk_done()	# see pte_unmap_unlock():
      pte_unmap()
      spin_unlock()

- bio_iov_iter_get_pages()
  - __bio_iov_iter_get_pages()
    - iov_iter_get_pages()
      - get_user_pages_fast()
        - internal_get_user_pages_fast()

          # fast path
          - lockless_pages_from_mm()
            - gup_{pgd,p4d,pud,pmd,pte}_range()
                ptep = pte_offset_map()		# not _lock()
                pte = ptep_get_lockless(ptep)

                page = pte_page(pte)
                try_grab_compound_head(page)	# inc refcount
                                            	# (RMW/barrier
                                             	#  on success)

                if (pte_val(pte) != pte_val(*ptep)) # read PTE
                        put_compound_head(page) # dec refcount
                        			# go slow path

          # slow path
          - __gup_longterm_unlocked()
            - get_user_pages_unlocked()
              - __get_user_pages_locked()
                - __get_user_pages()
                  - follow_{page,p4d,pud,pmd}_mask()
                    - follow_page_pte()
                        ptep = pte_offset_map_lock()
                        pte = *ptep
                        page = vm_normal_page(pte)
                        try_grab_page(page)	# inc refcount
                        pte_unmap_unlock()

- Huge Pages:
  ==========

Regarding transparent hugepages, that logic shouldn't change, as MADV_FREE
(aka lazyfree) pages are PageAnon() && !PageSwapBacked()
(madvise_free_pte_range() -> mark_page_lazyfree() -> lru_lazyfree_fn())
thus should reach shrink_page_list() -> split_huge_page_to_list() before
try_to_unmap[_one](), so it deals with normal pages only.

(And in case unlikely/TTU_SPLIT_HUGE_PMD/split_huge_pmd_address() happens,
which should not or be rare, the page refcount should be greater than
mapcount: the head page is referenced by tail pages.  That also prevents
checking the head `page` then incorrectly call page_remove_rmap(subpage)
for a tail page, that isn't even in the shrink_page_list()'s page_list (an
effect of split huge pmd/pmvw), as it might happen today in this unlikely
scenario.)

MADV_FREE'd buffers:
===================

So, back to the "if MADV_FREE pages are used as buffers" note.  The case
is arguable, and subject to multiple interpretations.

The madvise(2) manual page on the MADV_FREE advice value says:

1) 'After a successful MADV_FREE ... data will be lost when
   the kernel frees the pages.'
2) 'the free operation will be canceled if the caller writes
   into the page' / 'subsequent writes ... will succeed and
   then [the] kernel cannot free those dirtied pages'
3) 'If there is no subsequent write, the kernel can free the
   pages at any time.'

Thoughts, questions, considerations... respectively:

1) Since the kernel didn't actually free the page (page_ref_freeze()
   failed), should the data not have been lost? (on userspace read.)
2) Should writes performed by the direct IO read be able to cancel
   the free operation?
   - Should the direct IO read be considered as 'the caller' too,
     as it's been requested by 'the caller'?
   - Should the bio technique to dirty pages on return to userspace
     (bio_check_pages_dirty() is called/used by __blkdev_direct_IO())
     be considered in another/special way here?
3) Should an upcoming write from a previously requested direct IO
   read be considered as a subsequent write, so the kernel should
   not free the pages? (as it's known at the time of page reclaim.)

And lastly:

Technically, the last point would seem a reasonable consideration and
balance, as the madvise(2) manual page apparently (and fairly) seem to
assume that 'writes' are memory access from the userspace process (not
explicitly considering writes from the kernel or its corner cases; again,
fairly)..  plus the kernel fix implementation for the corner case of the
largely 'non-atomic write' encompassed by a direct IO read operation, is
relatively simple; and it helps.

Reproducer:
==========

@ test.c (simplified, but works)

	#define _GNU_SOURCE
	#include <fcntl.h>
	#include <stdio.h>
	#include <unistd.h>
	#include <sys/mman.h>

	int main() {
		int fd, i;
		char *buf;

		fd = open(DEV, O_RDONLY | O_DIRECT);

		buf = mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE,
                	   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			buf[i] = 1; // init to non-zero

		madvise(buf, BUF_SIZE, MADV_FREE);

		read(fd, buf, BUF_SIZE);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			printf("%p: 0x%x\n", &buf[i], buf[i]);

		return 0;
	}

@ block/fops.c (formerly fs/block_dev.c)

	+#include <linux/swap.h>
	...
	... __blkdev_direct_IO[_simple](...)
	{
	...
	+	if (!strcmp(current->comm, "good"))
	+		shrink_all_memory(ULONG_MAX);
	+
         	ret = bio_iov_iter_get_pages(...);
	+
	+	if (!strcmp(current->comm, "bad"))
	+		shrink_all_memory(ULONG_MAX);
	...
	}

@ shell

        # NUM_PAGES=4
        # PAGE_SIZE=$(getconf PAGE_SIZE)

        # yes | dd of=test.img bs=${PAGE_SIZE} count=${NUM_PAGES}
        # DEV=$(losetup -f --show test.img)

        # gcc -DDEV=\"$DEV\" \
              -DBUF_SIZE=$((PAGE_SIZE * NUM_PAGES)) \
              -DPAGE_SIZE=${PAGE_SIZE} \
               test.c -o test

        # od -tx1 $DEV
        0000000 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a
        *
        0040000

        # mv test good
        # ./good
        0x7f7c10418000: 0x79
        0x7f7c10419000: 0x79
        0x7f7c1041a000: 0x79
        0x7f7c1041b000: 0x79

        # mv good bad
        # ./bad
        0x7fa1b8050000: 0x0
        0x7fa1b8051000: 0x0
        0x7fa1b8052000: 0x0
        0x7fa1b8053000: 0x0

Note: the issue is consistent on v5.17-rc3, but it's intermittent with the
support of MADV_FREE on v4.5 (60%-70% error; needs swap).  [wrap
do_direct_IO() in do_blockdev_direct_IO() @ fs/direct-io.c].

- v5.17-rc3:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x0

        # free | grep Swap
        Swap:             0           0           0

- v4.5:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           2702  0x0
           1298  0x79

        # swapoff -av
        swapoff /swap

        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

Ceph/TCMalloc:
=============

For documentation purposes, the use case driving the analysis/fix is Ceph
on Ubuntu 18.04, as the TCMalloc library there still uses MADV_FREE to
release unused memory to the system from the mmap'ed page heap (might be
committed back/used again; it's not munmap'ed.) - PageHeap::DecommitSpan()
-> TCMalloc_SystemRelease() -> madvise() - PageHeap::CommitSpan() ->
TCMalloc_SystemCommit() -> do nothing.

Note: TCMalloc switched back to MADV_DONTNEED a few commits after the
release in Ubuntu 18.04 (google-perftools/gperftools 2.5), so the issue
just 'disappeared' on Ceph on later Ubuntu releases but is still present
in the kernel, and can be hit by other use cases.

The observed issue seems to be the old Ceph bug #22464 [1], where checksum
mismatches are observed (and instrumentation with buffer dumps shows
zero-pages read from mmap'ed/MADV_FREE'd page ranges).

The issue in Ceph was reasonably deemed a kernel bug (comment #50) and
mostly worked around with a retry mechanism, but other parts of Ceph could
still hit that (rocksdb).  Anyway, it's less likely to be hit again as
TCMalloc switched out of MADV_FREE by default.

(Some kernel versions/reports from the Ceph bug, and relation with
the MADV_FREE introduction/changes; TCMalloc versions not checked.)
- 4.4 good
- 4.5 (madv_free: introduction)
- 4.9 bad
- 4.10 good? maybe a swapless system
- 4.12 (madv_free: no longer free instantly on swapless systems)
- 4.13 bad

[1] https://tracker.ceph.com/issues/22464

Thanks:
======

Several people contributed to analysis/discussions/tests/reproducers in
the first stages when drilling down on ceph/tcmalloc/linux kernel:

- Dan Hill
- Dan Streetman
- Dongdong Tao
- Gavin Guo
- Gerald Yang
- Heitor Alves de Siqueira
- Ioanna Alifieraki
- Jay Vosburgh
- Matthew Ruffell
- Ponnuvel Palaniyappan

Reviews, suggestions, corrections, comments:

- Minchan Kim
- Yu Zhao
- Huang, Ying
- John Hubbard
- Christoph Hellwig

[[email protected]: v4]
  Link: https://lkml.kernel.org/r/[email protected]: https://lkml.kernel.org/r/[email protected]

Fixes: 802a3a9 ("mm: reclaim MADV_FREE pages")
Signed-off-by: Mauricio Faria de Oliveira <[email protected]>
Reviewed-by: "Huang, Ying" <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Yu Zhao <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: Miaohe Lin <[email protected]>
Cc: Dan Hill <[email protected]>
Cc: Dan Streetman <[email protected]>
Cc: Dongdong Tao <[email protected]>
Cc: Gavin Guo <[email protected]>
Cc: Gerald Yang <[email protected]>
Cc: Heitor Alves de Siqueira <[email protected]>
Cc: Ioanna Alifieraki <[email protected]>
Cc: Jay Vosburgh <[email protected]>
Cc: Matthew Ruffell <[email protected]>
Cc: Ponnuvel Palaniyappan <[email protected]>
Cc: <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
[mfo: backport: replace folio/test_flag with page/flag equivalents;
 real Fixes: 854e9ed ("mm: support madvise(MADV_FREE)") in v4.]
Signed-off-by: Mauricio Faria de Oliveira <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
ajs124 pushed a commit to helsinki-systems/linux that referenced this issue May 3, 2022
commit 6c8e2a2 upstream.

Problem:
=======

Userspace might read the zero-page instead of actual data from a direct IO
read on a block device if the buffers have been called madvise(MADV_FREE)
on earlier (this is discussed below) due to a race between page reclaim on
MADV_FREE and blkdev direct IO read.

- Race condition:
  ==============

During page reclaim, the MADV_FREE page check in try_to_unmap_one() checks
if the page is not dirty, then discards its rmap PTE(s) (vs.  remap back
if the page is dirty).

However, after try_to_unmap_one() returns to shrink_page_list(), it might
keep the page _anyway_ if page_ref_freeze() fails (it expects exactly
_one_ page reference, from the isolation for page reclaim).

Well, blkdev_direct_IO() gets references for all pages, and on READ
operations it only sets them dirty _later_.

So, if MADV_FREE'd pages (i.e., not dirty) are used as buffers for direct
IO read from block devices, and page reclaim happens during
__blkdev_direct_IO[_simple]() exactly AFTER bio_iov_iter_get_pages()
returns, but BEFORE the pages are set dirty, the situation happens.

The direct IO read eventually completes.  Now, when userspace reads the
buffers, the PTE is no longer there and the page fault handler
do_anonymous_page() services that with the zero-page, NOT the data!

A synthetic reproducer is provided.

- Page faults:
  ===========

If page reclaim happens BEFORE bio_iov_iter_get_pages() the issue doesn't
happen, because that faults-in all pages as writeable, so
do_anonymous_page() sets up a new page/rmap/PTE, and that is used by
direct IO.  The userspace reads don't fault as the PTE is there (thus
zero-page is not used/setup).

But if page reclaim happens AFTER it / BEFORE setting pages dirty, the PTE
is no longer there; the subsequent page faults can't help:

The data-read from the block device probably won't generate faults due to
DMA (no MMU) but even in the case it wouldn't use DMA, that happens on
different virtual addresses (not user-mapped addresses) because `struct
bio_vec` stores `struct page` to figure addresses out (which are different
from user-mapped addresses) for the read.

Thus userspace reads (to user-mapped addresses) still fault, then
do_anonymous_page() gets another `struct page` that would address/ map to
other memory than the `struct page` used by `struct bio_vec` for the read.
(The original `struct page` is not available, since it wasn't freed, as
page_ref_freeze() failed due to more page refs.  And even if it were
available, its data cannot be trusted anymore.)

Solution:
========

One solution is to check for the expected page reference count in
try_to_unmap_one().

There should be one reference from the isolation (that is also checked in
shrink_page_list() with page_ref_freeze()) plus one or more references
from page mapping(s) (put in discard: label).  Further references mean
that rmap/PTE cannot be unmapped/nuked.

(Note: there might be more than one reference from mapping due to
fork()/clone() without CLONE_VM, which use the same `struct page` for
references, until the copy-on-write page gets copied.)

So, additional page references (e.g., from direct IO read) now prevent the
rmap/PTE from being unmapped/dropped; similarly to the page is not freed
per shrink_page_list()/page_ref_freeze()).

- Races and Barriers:
  ==================

The new check in try_to_unmap_one() should be safe in races with
bio_iov_iter_get_pages() in get_user_pages() fast and slow paths, as it's
done under the PTE lock.

The fast path doesn't take the lock, but it checks if the PTE has changed
and if so, it drops the reference and leaves the page for the slow path
(which does take that lock).

The fast path requires synchronization w/ full memory barrier: it writes
the page reference count first then it reads the PTE later, while
try_to_unmap() writes PTE first then it reads page refcount.

And a second barrier is needed, as the page dirty flag should not be read
before the page reference count (as in __remove_mapping()).  (This can be
a load memory barrier only; no writes are involved.)

Call stack/comments:

- try_to_unmap_one()
  - page_vma_mapped_walk()
    - map_pte()			# see pte_offset_map_lock():
        pte_offset_map()
        spin_lock()

  - ptep_get_and_clear()	# write PTE
  - smp_mb()			# (new barrier) GUP fast path
  - page_ref_count()		# (new check) read refcount

  - page_vma_mapped_walk_done()	# see pte_unmap_unlock():
      pte_unmap()
      spin_unlock()

- bio_iov_iter_get_pages()
  - __bio_iov_iter_get_pages()
    - iov_iter_get_pages()
      - get_user_pages_fast()
        - internal_get_user_pages_fast()

          # fast path
          - lockless_pages_from_mm()
            - gup_{pgd,p4d,pud,pmd,pte}_range()
                ptep = pte_offset_map()		# not _lock()
                pte = ptep_get_lockless(ptep)

                page = pte_page(pte)
                try_grab_compound_head(page)	# inc refcount
                                            	# (RMW/barrier
                                             	#  on success)

                if (pte_val(pte) != pte_val(*ptep)) # read PTE
                        put_compound_head(page) # dec refcount
                        			# go slow path

          # slow path
          - __gup_longterm_unlocked()
            - get_user_pages_unlocked()
              - __get_user_pages_locked()
                - __get_user_pages()
                  - follow_{page,p4d,pud,pmd}_mask()
                    - follow_page_pte()
                        ptep = pte_offset_map_lock()
                        pte = *ptep
                        page = vm_normal_page(pte)
                        try_grab_page(page)	# inc refcount
                        pte_unmap_unlock()

- Huge Pages:
  ==========

Regarding transparent hugepages, that logic shouldn't change, as MADV_FREE
(aka lazyfree) pages are PageAnon() && !PageSwapBacked()
(madvise_free_pte_range() -> mark_page_lazyfree() -> lru_lazyfree_fn())
thus should reach shrink_page_list() -> split_huge_page_to_list() before
try_to_unmap[_one](), so it deals with normal pages only.

(And in case unlikely/TTU_SPLIT_HUGE_PMD/split_huge_pmd_address() happens,
which should not or be rare, the page refcount should be greater than
mapcount: the head page is referenced by tail pages.  That also prevents
checking the head `page` then incorrectly call page_remove_rmap(subpage)
for a tail page, that isn't even in the shrink_page_list()'s page_list (an
effect of split huge pmd/pmvw), as it might happen today in this unlikely
scenario.)

MADV_FREE'd buffers:
===================

So, back to the "if MADV_FREE pages are used as buffers" note.  The case
is arguable, and subject to multiple interpretations.

The madvise(2) manual page on the MADV_FREE advice value says:

1) 'After a successful MADV_FREE ... data will be lost when
   the kernel frees the pages.'
2) 'the free operation will be canceled if the caller writes
   into the page' / 'subsequent writes ... will succeed and
   then [the] kernel cannot free those dirtied pages'
3) 'If there is no subsequent write, the kernel can free the
   pages at any time.'

Thoughts, questions, considerations... respectively:

1) Since the kernel didn't actually free the page (page_ref_freeze()
   failed), should the data not have been lost? (on userspace read.)
2) Should writes performed by the direct IO read be able to cancel
   the free operation?
   - Should the direct IO read be considered as 'the caller' too,
     as it's been requested by 'the caller'?
   - Should the bio technique to dirty pages on return to userspace
     (bio_check_pages_dirty() is called/used by __blkdev_direct_IO())
     be considered in another/special way here?
3) Should an upcoming write from a previously requested direct IO
   read be considered as a subsequent write, so the kernel should
   not free the pages? (as it's known at the time of page reclaim.)

And lastly:

Technically, the last point would seem a reasonable consideration and
balance, as the madvise(2) manual page apparently (and fairly) seem to
assume that 'writes' are memory access from the userspace process (not
explicitly considering writes from the kernel or its corner cases; again,
fairly)..  plus the kernel fix implementation for the corner case of the
largely 'non-atomic write' encompassed by a direct IO read operation, is
relatively simple; and it helps.

Reproducer:
==========

@ test.c (simplified, but works)

	#define _GNU_SOURCE
	#include <fcntl.h>
	#include <stdio.h>
	#include <unistd.h>
	#include <sys/mman.h>

	int main() {
		int fd, i;
		char *buf;

		fd = open(DEV, O_RDONLY | O_DIRECT);

		buf = mmap(NULL, BUF_SIZE, PROT_READ | PROT_WRITE,
                	   MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			buf[i] = 1; // init to non-zero

		madvise(buf, BUF_SIZE, MADV_FREE);

		read(fd, buf, BUF_SIZE);

		for (i = 0; i < BUF_SIZE; i += PAGE_SIZE)
			printf("%p: 0x%x\n", &buf[i], buf[i]);

		return 0;
	}

@ block/fops.c (formerly fs/block_dev.c)

	+#include <linux/swap.h>
	...
	... __blkdev_direct_IO[_simple](...)
	{
	...
	+	if (!strcmp(current->comm, "good"))
	+		shrink_all_memory(ULONG_MAX);
	+
         	ret = bio_iov_iter_get_pages(...);
	+
	+	if (!strcmp(current->comm, "bad"))
	+		shrink_all_memory(ULONG_MAX);
	...
	}

@ shell

        # NUM_PAGES=4
        # PAGE_SIZE=$(getconf PAGE_SIZE)

        # yes | dd of=test.img bs=${PAGE_SIZE} count=${NUM_PAGES}
        # DEV=$(losetup -f --show test.img)

        # gcc -DDEV=\"$DEV\" \
              -DBUF_SIZE=$((PAGE_SIZE * NUM_PAGES)) \
              -DPAGE_SIZE=${PAGE_SIZE} \
               test.c -o test

        # od -tx1 $DEV
        0000000 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a 79 0a
        *
        0040000

        # mv test good
        # ./good
        0x7f7c10418000: 0x79
        0x7f7c10419000: 0x79
        0x7f7c1041a000: 0x79
        0x7f7c1041b000: 0x79

        # mv good bad
        # ./bad
        0x7fa1b8050000: 0x0
        0x7fa1b8051000: 0x0
        0x7fa1b8052000: 0x0
        0x7fa1b8053000: 0x0

Note: the issue is consistent on v5.17-rc3, but it's intermittent with the
support of MADV_FREE on v4.5 (60%-70% error; needs swap).  [wrap
do_direct_IO() in do_blockdev_direct_IO() @ fs/direct-io.c].

- v5.17-rc3:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x0

        # free | grep Swap
        Swap:             0           0           0

- v4.5:

        # for i in {1..1000}; do ./good; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

        # mv good bad
        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           2702  0x0
           1298  0x79

        # swapoff -av
        swapoff /swap

        # for i in {1..1000}; do ./bad; done \
            | cut -d: -f2 | sort | uniq -c
           4000  0x79

Ceph/TCMalloc:
=============

For documentation purposes, the use case driving the analysis/fix is Ceph
on Ubuntu 18.04, as the TCMalloc library there still uses MADV_FREE to
release unused memory to the system from the mmap'ed page heap (might be
committed back/used again; it's not munmap'ed.) - PageHeap::DecommitSpan()
-> TCMalloc_SystemRelease() -> madvise() - PageHeap::CommitSpan() ->
TCMalloc_SystemCommit() -> do nothing.

Note: TCMalloc switched back to MADV_DONTNEED a few commits after the
release in Ubuntu 18.04 (google-perftools/gperftools 2.5), so the issue
just 'disappeared' on Ceph on later Ubuntu releases but is still present
in the kernel, and can be hit by other use cases.

The observed issue seems to be the old Ceph bug #22464 [1], where checksum
mismatches are observed (and instrumentation with buffer dumps shows
zero-pages read from mmap'ed/MADV_FREE'd page ranges).

The issue in Ceph was reasonably deemed a kernel bug (comment raspberrypi#50) and
mostly worked around with a retry mechanism, but other parts of Ceph could
still hit that (rocksdb).  Anyway, it's less likely to be hit again as
TCMalloc switched out of MADV_FREE by default.

(Some kernel versions/reports from the Ceph bug, and relation with
the MADV_FREE introduction/changes; TCMalloc versions not checked.)
- 4.4 good
- 4.5 (madv_free: introduction)
- 4.9 bad
- 4.10 good? maybe a swapless system
- 4.12 (madv_free: no longer free instantly on swapless systems)
- 4.13 bad

[1] https://tracker.ceph.com/issues/22464

Thanks:
======

Several people contributed to analysis/discussions/tests/reproducers in
the first stages when drilling down on ceph/tcmalloc/linux kernel:

- Dan Hill
- Dan Streetman
- Dongdong Tao
- Gavin Guo
- Gerald Yang
- Heitor Alves de Siqueira
- Ioanna Alifieraki
- Jay Vosburgh
- Matthew Ruffell
- Ponnuvel Palaniyappan

Reviews, suggestions, corrections, comments:

- Minchan Kim
- Yu Zhao
- Huang, Ying
- John Hubbard
- Christoph Hellwig

[[email protected]: v4]
  Link: https://lkml.kernel.org/r/[email protected]: https://lkml.kernel.org/r/[email protected]

Fixes: 802a3a9 ("mm: reclaim MADV_FREE pages")
Signed-off-by: Mauricio Faria de Oliveira <[email protected]>
Reviewed-by: "Huang, Ying" <[email protected]>
Cc: Minchan Kim <[email protected]>
Cc: Yu Zhao <[email protected]>
Cc: Yang Shi <[email protected]>
Cc: Miaohe Lin <[email protected]>
Cc: Dan Hill <[email protected]>
Cc: Dan Streetman <[email protected]>
Cc: Dongdong Tao <[email protected]>
Cc: Gavin Guo <[email protected]>
Cc: Gerald Yang <[email protected]>
Cc: Heitor Alves de Siqueira <[email protected]>
Cc: Ioanna Alifieraki <[email protected]>
Cc: Jay Vosburgh <[email protected]>
Cc: Matthew Ruffell <[email protected]>
Cc: Ponnuvel Palaniyappan <[email protected]>
Cc: <[email protected]>
Cc: Christoph Hellwig <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
[mfo: backport: replace folio/test_flag with page/flag equivalents;
 real Fixes: 854e9ed ("mm: support madvise(MADV_FREE)") in v4.]
Signed-off-by: Mauricio Faria de Oliveira <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Jun 12, 2023
The commit 4f7e723 ("cgroup: Fix threadgroup_rwsem <-> cpus_read_lock()
deadlock") fixed the deadlock between cgroup_threadgroup_rwsem and
cpus_read_lock() by introducing cgroup_attach_{lock,unlock}() and removing
cpus_read_{lock,unlock}() from cpuset_attach(). But cgroup_transfer_tasks()
was missed and not handled, which will cause th following warning:

 WARNING: CPU: 0 PID: 589 at kernel/cpu.c:526 lockdep_assert_cpus_held+0x32/0x40
 CPU: 0 PID: 589 Comm: kworker/1:4 Not tainted 6.4.0-rc2-next-20230517 #50
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
 Workqueue: events cpuset_hotplug_workfn
 RIP: 0010:lockdep_assert_cpus_held+0x32/0x40
 <...>
 Call Trace:
  <TASK>
  cpuset_attach+0x40/0x240
  cgroup_migrate_execute+0x452/0x5e0
  ? _raw_spin_unlock_irq+0x28/0x40
  cgroup_transfer_tasks+0x1f3/0x360
  ? find_held_lock+0x32/0x90
  ? cpuset_hotplug_workfn+0xc81/0xed0
  cpuset_hotplug_workfn+0xcb1/0xed0
  ? process_one_work+0x248/0x5b0
  process_one_work+0x2b9/0x5b0
  worker_thread+0x56/0x3b0
  ? process_one_work+0x5b0/0x5b0
  kthread+0xf1/0x120
  ? kthread_complete_and_exit+0x20/0x20
  ret_from_fork+0x1f/0x30
  </TASK>

So just use the cgroup_attach_{lock,unlock}() helper to fix it.

Reported-by: Zhao Gongyi <[email protected]>
Signed-off-by: Qi Zheng <[email protected]>
Acked-by: Muchun Song <[email protected]>
Fixes: 05c7b7a ("cgroup/cpuset: Fix a race between cpuset_attach() and cpu hotplug")
Cc: [email protected] # v5.17+
Signed-off-by: Tejun Heo <[email protected]>
popcornmix pushed a commit that referenced this issue Jun 22, 2023
[ Upstream commit ab1de7e ]

The commit 4f7e723 ("cgroup: Fix threadgroup_rwsem <-> cpus_read_lock()
deadlock") fixed the deadlock between cgroup_threadgroup_rwsem and
cpus_read_lock() by introducing cgroup_attach_{lock,unlock}() and removing
cpus_read_{lock,unlock}() from cpuset_attach(). But cgroup_transfer_tasks()
was missed and not handled, which will cause th following warning:

 WARNING: CPU: 0 PID: 589 at kernel/cpu.c:526 lockdep_assert_cpus_held+0x32/0x40
 CPU: 0 PID: 589 Comm: kworker/1:4 Not tainted 6.4.0-rc2-next-20230517 #50
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
 Workqueue: events cpuset_hotplug_workfn
 RIP: 0010:lockdep_assert_cpus_held+0x32/0x40
 <...>
 Call Trace:
  <TASK>
  cpuset_attach+0x40/0x240
  cgroup_migrate_execute+0x452/0x5e0
  ? _raw_spin_unlock_irq+0x28/0x40
  cgroup_transfer_tasks+0x1f3/0x360
  ? find_held_lock+0x32/0x90
  ? cpuset_hotplug_workfn+0xc81/0xed0
  cpuset_hotplug_workfn+0xcb1/0xed0
  ? process_one_work+0x248/0x5b0
  process_one_work+0x2b9/0x5b0
  worker_thread+0x56/0x3b0
  ? process_one_work+0x5b0/0x5b0
  kthread+0xf1/0x120
  ? kthread_complete_and_exit+0x20/0x20
  ret_from_fork+0x1f/0x30
  </TASK>

So just use the cgroup_attach_{lock,unlock}() helper to fix it.

Reported-by: Zhao Gongyi <[email protected]>
Signed-off-by: Qi Zheng <[email protected]>
Acked-by: Muchun Song <[email protected]>
Fixes: 05c7b7a ("cgroup/cpuset: Fix a race between cpuset_attach() and cpu hotplug")
Cc: [email protected] # v5.17+
Signed-off-by: Tejun Heo <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Jun 23, 2023
[ Upstream commit ab1de7e ]

The commit 4f7e723 ("cgroup: Fix threadgroup_rwsem <-> cpus_read_lock()
deadlock") fixed the deadlock between cgroup_threadgroup_rwsem and
cpus_read_lock() by introducing cgroup_attach_{lock,unlock}() and removing
cpus_read_{lock,unlock}() from cpuset_attach(). But cgroup_transfer_tasks()
was missed and not handled, which will cause th following warning:

 WARNING: CPU: 0 PID: 589 at kernel/cpu.c:526 lockdep_assert_cpus_held+0x32/0x40
 CPU: 0 PID: 589 Comm: kworker/1:4 Not tainted 6.4.0-rc2-next-20230517 #50
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
 Workqueue: events cpuset_hotplug_workfn
 RIP: 0010:lockdep_assert_cpus_held+0x32/0x40
 <...>
 Call Trace:
  <TASK>
  cpuset_attach+0x40/0x240
  cgroup_migrate_execute+0x452/0x5e0
  ? _raw_spin_unlock_irq+0x28/0x40
  cgroup_transfer_tasks+0x1f3/0x360
  ? find_held_lock+0x32/0x90
  ? cpuset_hotplug_workfn+0xc81/0xed0
  cpuset_hotplug_workfn+0xcb1/0xed0
  ? process_one_work+0x248/0x5b0
  process_one_work+0x2b9/0x5b0
  worker_thread+0x56/0x3b0
  ? process_one_work+0x5b0/0x5b0
  kthread+0xf1/0x120
  ? kthread_complete_and_exit+0x20/0x20
  ret_from_fork+0x1f/0x30
  </TASK>

So just use the cgroup_attach_{lock,unlock}() helper to fix it.

Reported-by: Zhao Gongyi <[email protected]>
Signed-off-by: Qi Zheng <[email protected]>
Acked-by: Muchun Song <[email protected]>
Fixes: 05c7b7a ("cgroup/cpuset: Fix a race between cpuset_attach() and cpu hotplug")
Cc: [email protected] # v5.17+
Signed-off-by: Tejun Heo <[email protected]>
Signed-off-by: Sasha Levin <[email protected]>
popcornmix pushed a commit that referenced this issue Sep 19, 2023
Commit a1d7671 ("md: use mddev->external to select holder in
export_rdev()") fix the problem that 'claim_rdev' is used for
blkdev_get_by_dev() while 'rdev' is used for blkdev_put().

However, if mddev->external is changed from 0 to 1, then 'rdev' is used
for blkdev_get_by_dev() while 'claim_rdev' is used for blkdev_put(). And
this problem can be reporduced reliably by following:

New file: mdadm/tests/23rdev-lifetime

devname=${dev0##*/}
devt=`cat /sys/block/$devname/dev`
pid=""
runtime=2

clean_up_test() {
        pill -9 $pid
        echo clear > /sys/block/md0/md/array_state
}

trap 'clean_up_test' EXIT

add_by_sysfs() {
        while true; do
                echo $devt > /sys/block/md0/md/new_dev
        done
}

remove_by_sysfs(){
        while true; do
                echo remove > /sys/block/md0/md/dev-${devname}/state
        done
}

echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed"

add_by_sysfs &
pid="$pid $!"

remove_by_sysfs &
pid="$pid $!"

sleep $runtime
exit 0

Test cmd:

./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime

Test result:

------------[ cut here ]------------
WARNING: CPU: 0 PID: 960 at block/bdev.c:618 blkdev_put+0x27c/0x330
Modules linked in: multipath md_mod loop
CPU: 0 PID: 960 Comm: test Not tainted 6.5.0-rc2-00121-g01e55c376936-dirty #50
RIP: 0010:blkdev_put+0x27c/0x330
Call Trace:
 <TASK>
 export_rdev.isra.23+0x50/0xa0 [md_mod]
 mddev_unlock+0x19d/0x300 [md_mod]
 rdev_attr_store+0xec/0x190 [md_mod]
 sysfs_kf_write+0x52/0x70
 kernfs_fop_write_iter+0x19a/0x2a0
 vfs_write+0x3b5/0x770
 ksys_write+0x74/0x150
 __x64_sys_write+0x22/0x30
 do_syscall_64+0x40/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

Fix the problem by recording if 'rdev' is used as holder.

Fixes: a1d7671 ("md: use mddev->external to select holder in export_rdev()")
Signed-off-by: Yu Kuai <[email protected]>
Signed-off-by: Song Liu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
popcornmix pushed a commit that referenced this issue Sep 25, 2023
[ Upstream commit 9989214 ]

Commit a1d7671 ("md: use mddev->external to select holder in
export_rdev()") fix the problem that 'claim_rdev' is used for
blkdev_get_by_dev() while 'rdev' is used for blkdev_put().

However, if mddev->external is changed from 0 to 1, then 'rdev' is used
for blkdev_get_by_dev() while 'claim_rdev' is used for blkdev_put(). And
this problem can be reporduced reliably by following:

New file: mdadm/tests/23rdev-lifetime

devname=${dev0##*/}
devt=`cat /sys/block/$devname/dev`
pid=""
runtime=2

clean_up_test() {
        pill -9 $pid
        echo clear > /sys/block/md0/md/array_state
}

trap 'clean_up_test' EXIT

add_by_sysfs() {
        while true; do
                echo $devt > /sys/block/md0/md/new_dev
        done
}

remove_by_sysfs(){
        while true; do
                echo remove > /sys/block/md0/md/dev-${devname}/state
        done
}

echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed"

add_by_sysfs &
pid="$pid $!"

remove_by_sysfs &
pid="$pid $!"

sleep $runtime
exit 0

Test cmd:

./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime

Test result:

------------[ cut here ]------------
WARNING: CPU: 0 PID: 960 at block/bdev.c:618 blkdev_put+0x27c/0x330
Modules linked in: multipath md_mod loop
CPU: 0 PID: 960 Comm: test Not tainted 6.5.0-rc2-00121-g01e55c376936-dirty #50
RIP: 0010:blkdev_put+0x27c/0x330
Call Trace:
 <TASK>
 export_rdev.isra.23+0x50/0xa0 [md_mod]
 mddev_unlock+0x19d/0x300 [md_mod]
 rdev_attr_store+0xec/0x190 [md_mod]
 sysfs_kf_write+0x52/0x70
 kernfs_fop_write_iter+0x19a/0x2a0
 vfs_write+0x3b5/0x770
 ksys_write+0x74/0x150
 __x64_sys_write+0x22/0x30
 do_syscall_64+0x40/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

Fix the problem by recording if 'rdev' is used as holder.

Fixes: a1d7671 ("md: use mddev->external to select holder in export_rdev()")
Signed-off-by: Yu Kuai <[email protected]>
Signed-off-by: Song Liu <[email protected]>
Link: https://lore.kernel.org/r/[email protected]
Signed-off-by: Sasha Levin <[email protected]>
0lxb pushed a commit to 0lxb/rpi_linux that referenced this issue Jan 30, 2024
spockfish pushed a commit to RoPieee/linux that referenced this issue Mar 8, 2024
commit 39880bd upstream.

This is a partial backport of the upstram commit 39880bd ("mptcp:
get rid of msk->subflow"). It's partial to avoid a long a complex
dependency chain not suitable for stable.

The only bit remaning from the original commit is the introduction of a
new field avoid a race at close time causing an UaF:

BUG: KASAN: use-after-free in mptcp_subflow_queue_clean+0x2c9/0x390 include/net/mptcp.h:104
Read of size 1 at addr ffff88803bf72884 by task syz-executor.6/23092

CPU: 0 PID: 23092 Comm: syz-executor.6 Not tainted 6.1.65-gc6114c845984 raspberrypi#50
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x125/0x18f lib/dump_stack.c:106
 print_report+0x163/0x4f0 mm/kasan/report.c:284
 kasan_report+0xc4/0x100 mm/kasan/report.c:495
 mptcp_subflow_queue_clean+0x2c9/0x390 include/net/mptcp.h:104
 mptcp_check_listen_stop+0x190/0x2a0 net/mptcp/protocol.c:3009
 __mptcp_close+0x9a/0x970 net/mptcp/protocol.c:3024
 mptcp_close+0x2a/0x130 net/mptcp/protocol.c:3089
 inet_release+0x13d/0x190 net/ipv4/af_inet.c:429
 sock_close+0xcf/0x230 net/socket.c:652
 __fput+0x3a2/0x870 fs/file_table.c:320
 task_work_run+0x24e/0x300 kernel/task_work.c:179
 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
 exit_to_user_mode_loop+0xa4/0xc0 kernel/entry/common.c:171
 exit_to_user_mode_prepare+0x51/0x90 kernel/entry/common.c:204
 syscall_exit_to_user_mode+0x26/0x140 kernel/entry/common.c:286
 do_syscall_64+0x53/0xa0 arch/x86/entry/common.c:86
 entry_SYSCALL_64_after_hwframe+0x64/0xce
RIP: 0033:0x41d791
Code: 75 14 b8 03 00 00 00 0f 05 48 3d 01 f0 ff ff 0f 83 74 2a 00 00 c3 48 83 ec 08 e8 9a fc ff ff 48 89 04 24 b8 03 00 00 00 0f 05 <48> 8b 3c 24 48 89 c2 e8 e3 fc ff ff 48 89 d0 48 83 c4 08 48 3d 01
RSP: 002b:00000000008bfb90 EFLAGS: 00000293 ORIG_RAX: 0000000000000003
RAX: 0000000000000000 RBX: 0000000000000004 RCX: 000000000041d791
RDX: 0000001b33920000 RSI: ffffffff8139adff RDI: 0000000000000003
RBP: 000000000079d980 R08: 0000001b33d20000 R09: 0000000000000951
R10: 000000008139a955 R11: 0000000000000293 R12: 00000000000c739b
R13: 000000000079bf8c R14: 00007fa301053000 R15: 00000000000c705a
 </TASK>

Allocated by task 22528:
 kasan_save_stack mm/kasan/common.c:45 [inline]
 kasan_set_track+0x40/0x70 mm/kasan/common.c:52
 ____kasan_kmalloc mm/kasan/common.c:374 [inline]
 __kasan_kmalloc+0xa0/0xb0 mm/kasan/common.c:383
 kasan_kmalloc include/linux/kasan.h:211 [inline]
 __do_kmalloc_node mm/slab_common.c:955 [inline]
 __kmalloc+0xaa/0x1c0 mm/slab_common.c:968
 kmalloc include/linux/slab.h:558 [inline]
 sk_prot_alloc+0xac/0x200 net/core/sock.c:2038
 sk_clone_lock+0x56/0x1090 net/core/sock.c:2236
 inet_csk_clone_lock+0x26/0x420 net/ipv4/inet_connection_sock.c:1141
 tcp_create_openreq_child+0x30/0x1910 net/ipv4/tcp_minisocks.c:474
 tcp_v6_syn_recv_sock+0x413/0x1a90 net/ipv6/tcp_ipv6.c:1283
 subflow_syn_recv_sock+0x621/0x1300 net/mptcp/subflow.c:730
 tcp_get_cookie_sock+0xf0/0x5f0 net/ipv4/syncookies.c:201
 cookie_v6_check+0x130f/0x1c50 net/ipv6/syncookies.c:261
 tcp_v6_do_rcv+0x7e0/0x12b0 net/ipv6/tcp_ipv6.c:1147
 tcp_v6_rcv+0x2494/0x2f50 net/ipv6/tcp_ipv6.c:1743
 ip6_protocol_deliver_rcu+0xba3/0x1620 net/ipv6/ip6_input.c:438
 ip6_input+0x1bc/0x470 net/ipv6/ip6_input.c:483
 ipv6_rcv+0xef/0x2c0 include/linux/netfilter.h:302
 __netif_receive_skb+0x1ea/0x6a0 net/core/dev.c:5525
 process_backlog+0x353/0x660 net/core/dev.c:5967
 __napi_poll+0xc6/0x5a0 net/core/dev.c:6534
 net_rx_action+0x652/0xea0 net/core/dev.c:6601
 __do_softirq+0x176/0x525 kernel/softirq.c:571

Freed by task 23093:
 kasan_save_stack mm/kasan/common.c:45 [inline]
 kasan_set_track+0x40/0x70 mm/kasan/common.c:52
 kasan_save_free_info+0x2b/0x50 mm/kasan/generic.c:516
 ____kasan_slab_free+0x13a/0x1b0 mm/kasan/common.c:236
 kasan_slab_free include/linux/kasan.h:177 [inline]
 slab_free_hook mm/slub.c:1724 [inline]
 slab_free_freelist_hook mm/slub.c:1750 [inline]
 slab_free mm/slub.c:3661 [inline]
 __kmem_cache_free+0x1eb/0x340 mm/slub.c:3674
 sk_prot_free net/core/sock.c:2074 [inline]
 __sk_destruct+0x4ad/0x620 net/core/sock.c:2160
 tcp_v6_rcv+0x269c/0x2f50 net/ipv6/tcp_ipv6.c:1761
 ip6_protocol_deliver_rcu+0xba3/0x1620 net/ipv6/ip6_input.c:438
 ip6_input+0x1bc/0x470 net/ipv6/ip6_input.c:483
 ipv6_rcv+0xef/0x2c0 include/linux/netfilter.h:302
 __netif_receive_skb+0x1ea/0x6a0 net/core/dev.c:5525
 process_backlog+0x353/0x660 net/core/dev.c:5967
 __napi_poll+0xc6/0x5a0 net/core/dev.c:6534
 net_rx_action+0x652/0xea0 net/core/dev.c:6601
 __do_softirq+0x176/0x525 kernel/softirq.c:571

The buggy address belongs to the object at ffff88803bf72000
 which belongs to the cache kmalloc-4k of size 4096
The buggy address is located 2180 bytes inside of
 4096-byte region [ffff88803bf72000, ffff88803bf73000)

The buggy address belongs to the physical page:
page:00000000a72e4e51 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x3bf70
head:00000000a72e4e51 order:3 compound_mapcount:0 compound_pincount:0
flags: 0x100000000010200(slab|head|node=0|zone=1)
raw: 0100000000010200 ffffea0000a0ea00 dead000000000002 ffff888100042140
raw: 0000000000000000 0000000000040004 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff88803bf72780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff88803bf72800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff88803bf72880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                   ^
 ffff88803bf72900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff88803bf72980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb

Prevent the MPTCP worker from freeing the first subflow for unaccepted
socket when such sockets transition to TCP_CLOSE state, and let that
happen at accept() or listener close() time.

Fixes: b6985b9 ("mptcp: use the workqueue to destroy unaccepted sockets")
Signed-off-by: Paolo Abeni <[email protected]>
Reviewed-by: Mat Martineau <[email protected]>
Reported-by: Christoph Paasch <[email protected]>
Tested-by: Christoph Paasch <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants