Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[RTM when tested] Added a multi-node constraint for the total duration of the movement #782

Merged
merged 4 commits into from
Oct 27, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions bioptim/limits/constraints.py
Original file line number Diff line number Diff line change
Expand Up @@ -514,9 +514,9 @@ def implicit_marker_acceleration(
)

var = []
var.extend([controller.states[key] for key in controller.states])
var.extend([controller.controls[key] for key in controller.controls])
var.extend([controller.parameters[key] for key in controller.parameters])
var.extend([controller.states[key] for key in controller.states.keys()])
var.extend([controller.controls[key] for key in controller.controls.keys()])
var.extend([controller.parameters[key] for key in controller.parameters.keys()])

return controller.mx_to_cx("contact_acceleration", contact_acceleration, *var)

Expand Down
1 change: 1 addition & 0 deletions bioptim/limits/multinode_constraint.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,7 @@ class MultinodeConstraintFcn(FcnEnum):
COM_EQUALITY = (MultinodeConstraintFunctions.Functions.com_equality,)
COM_VELOCITY_EQUALITY = (MultinodeConstraintFunctions.Functions.com_velocity_equality,)
TIME_CONSTRAINT = (MultinodeConstraintFunctions.Functions.time_equality,)
TRACK_TOTAL_TIME = (MultinodeConstraintFunctions.Functions.track_total_time,)
STOCHASTIC_HELPER_MATRIX_EXPLICIT = (MultinodeConstraintFunctions.Functions.stochastic_helper_matrix_explicit,)
STOCHASTIC_HELPER_MATRIX_IMPLICIT = (MultinodeConstraintFunctions.Functions.stochastic_helper_matrix_implicit,)
STOCHASTIC_COVARIANCE_MATRIX_CONTINUITY_IMPLICIT = (
Expand Down
45 changes: 29 additions & 16 deletions bioptim/limits/multinode_penalty.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,22 +321,7 @@

MultinodePenaltyFunctions.Functions._prepare_controller_cx(controllers)

def get_time_parameter_idx(controller: PenaltyController, i_phase):
time_idx = None
for i in range(controller.parameters.cx.shape[0]):
param_name = controller.parameters.cx[i].name()
if param_name == "time_phase_" + str(controller.phase_idx):
time_idx = controller.phase_idx
if time_idx is None:
raise RuntimeError(
f"Time penalty can't be established since the {i_phase}th phase has no time parameter. "
f"\nTime parameter can be added with : "
f"\nobjective_functions.add(ObjectiveFcn.[Mayer or Lagrange].MINIMIZE_TIME) or "
f"\nwith constraints.add(ConstraintFcn.TIME_CONSTRAINT)."
)
return time_idx

time_idx = [get_time_parameter_idx(controller, i) for i, controller in enumerate(controllers)]
time_idx = [controller.get_time_parameter_idx() for i, controller in enumerate(controllers)]

Check warning on line 324 in bioptim/limits/multinode_penalty.py

View check run for this annotation

Codecov / codecov/patch

bioptim/limits/multinode_penalty.py#L324

Added line #L324 was not covered by tests

time_0 = controllers[0].parameters.cx[time_idx[0]]
out = controllers[0].cx.zeros((1, 1))
Expand All @@ -346,6 +331,34 @@

return out

@staticmethod
def track_total_time(penalty, controllers: list[PenaltyController, PenaltyController]):
"""
The total duration of the phases must be equal to a defined duration

Parameters
----------
penalty : MultinodePenalty
A reference to the phase penalty
controllers: list[PenaltyController, PenaltyController]
The penalty node elements

Returns
-------
The difference between the duration of the phases
"""

MultinodePenaltyFunctions.Functions._prepare_controller_cx(controllers)

time_idx = [controller.get_time_parameter_idx() for i, controller in enumerate(controllers)]

time = controllers[0].parameters.cx[time_idx[0]]
for i in range(1, len(controllers)):
time_i = controllers[i].parameters.cx[time_idx[i]]
time += time_i

return time

@staticmethod
def stochastic_helper_matrix_explicit(
penalty,
Expand Down
1 change: 1 addition & 0 deletions bioptim/limits/penalty.py
Original file line number Diff line number Diff line change
Expand Up @@ -1464,6 +1464,7 @@ def _get_markers_acceleration(controller: PenaltyController, markers, CoM=False)
"com_ddot" if CoM else "markers_acceleration",
markers,
controller.time,
controller.parameters,
controller.states["q"],
controller.states["qdot"],
last_param,
Expand Down
15 changes: 15 additions & 0 deletions bioptim/limits/penalty_controller.py
Original file line number Diff line number Diff line change
Expand Up @@ -321,3 +321,18 @@
The scaled parameters
"""
return self._nlp.parameters.scaled

def get_time_parameter_idx(self):
time_idx = None
for i in range(self.parameters.cx.shape[0]):
param_name = self.parameters.cx[i].name()
if param_name == "time_phase_" + str(self.phase_idx):
time_idx = self.phase_idx
if time_idx is None:
raise RuntimeError(

Check warning on line 332 in bioptim/limits/penalty_controller.py

View check run for this annotation

Codecov / codecov/patch

bioptim/limits/penalty_controller.py#L332

Added line #L332 was not covered by tests
f"Time penalty can't be established since the {self.phase_idx}th phase has no time parameter. "
f"\nTime parameter can be added with : "
f"\nobjective_functions.add(ObjectiveFcn.[Mayer or Lagrange].MINIMIZE_TIME) or "
f"\nwith constraints.add(ConstraintFcn.TIME_CONSTRAINT)."
)
return time_idx
14 changes: 9 additions & 5 deletions bioptim/optimization/non_linear_program.py
Original file line number Diff line number Diff line change
Expand Up @@ -339,11 +339,15 @@ def mx_to_cx(name: str, symbolic_expression: SX | MX | Callable, *all_param: Any

cx_types = OptimizationVariable, OptimizationVariableList, Parameter, ParameterList
mx = [var.mx if isinstance(var, cx_types) else var for var in all_param]
cx = [
var.mapping.to_second.map(var.cx_start) if hasattr(var, "mapping") else var.cx_start
for var in all_param
if isinstance(var, cx_types)
]
cx = []
for var in all_param:
if hasattr(var, "mapping"):
cx += [var.mapping.to_second.map(var.cx_start)]
elif hasattr(var, "cx_start"):
cx += [var.cx_start]
else:
cx += [var.cx] # This is a temporary hack until parameters are included as OptimizationVariables

return NonLinearProgram.to_casadi_func(name, symbolic_expression, *mx)(*cx)

@staticmethod
Expand Down
55 changes: 50 additions & 5 deletions tests/shard4/test_penalty.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,10 @@
Axis,
ConstraintFcn,
Constraint,
MultinodeConstraintFcn,
MultinodeConstraintList,
MultinodeConstraint,
MultinodeObjective,
Node,
RigidBodyDynamics,
ControlType,
Expand Down Expand Up @@ -65,11 +69,14 @@ def prepare_test_ocp(
dynamics = DynamicsList()
dynamics.add(DynamicsFcn.TORQUE_DRIVEN, expand_dynamics=True, phase_dynamics=phase_dynamics)

objective_functions = Objective(ObjectiveFcn.Mayer.MINIMIZE_TIME)

ocp = OptimalControlProgram(
bio_model,
dynamics,
10,
1.0,
objective_functions=objective_functions,
use_sx=use_sx,
)

Expand All @@ -79,7 +86,13 @@ def prepare_test_ocp(


def get_penalty_value(ocp, penalty, t, x, u, p, s):
val = penalty.type(penalty, PenaltyController(ocp, ocp.nlp[0], t, x, u, [], [], [], s, [], 0), **penalty.params)
if isinstance(penalty, MultinodeConstraint) or isinstance(penalty, MultinodeObjective):
controller = [
PenaltyController(ocp, ocp.nlp[0], t, x, u, [], [], p, s, [], 0) for i in range(len(penalty.nodes_phase))
]
else:
controller = PenaltyController(ocp, ocp.nlp[0], t, x, u, [], [], p, s, [], 0)
val = penalty.type(penalty, controller, **penalty.params)
# changed only this one
if isinstance(val, float):
return val
Expand Down Expand Up @@ -117,7 +130,7 @@ def test_penalty_minimize_time(penalty_origin, value, phase_dynamics):
t = [0]
x = [DM.ones((8, 1)) * value]
u = [0]
p = []
p = [1]
s = []

penalty_type = penalty_origin.MINIMIZE_TIME
Expand Down Expand Up @@ -365,7 +378,7 @@ def test_penalty_minimize_markers_acceleration(penalty_origin, implicit, value,
t = [0]
x = [DM.ones((8, 1)) * value]
u = [0]
p = []
p = [0]
s = []
penalty_type = penalty_origin.MINIMIZE_MARKERS_ACCELERATION

Expand Down Expand Up @@ -1086,14 +1099,46 @@ def test_penalty_time_constraint(value, phase_dynamics):
t = [0]
x = [0]
u = [0]
p = []
p = [0]
s = []

penalty_type = ConstraintFcn.TIME_CONSTRAINT
penalty = Constraint(penalty_type)
res = get_penalty_value(ocp, penalty, t, x, u, p, s)

np.testing.assert_almost_equal(res, np.array([]))
np.testing.assert_almost_equal(res, np.array(0))


@pytest.mark.parametrize("phase_dynamics", [PhaseDynamics.SHARED_DURING_THE_PHASE, PhaseDynamics.ONE_PER_NODE])
@pytest.mark.parametrize("value", [0.1, -10])
def test_penalty_constraint_total_time(value, phase_dynamics):
ocp = prepare_test_ocp(phase_dynamics=phase_dynamics)
t = [0]
x = [DM.ones((8, 1)) * value]
u = [0]
p = [0.1]
s = []

penalty_type = MultinodeConstraintFcn.TRACK_TOTAL_TIME
penalty = MultinodeConstraintList()
penalty.add(
penalty_type,
min_bound=0.01,
max_bound=20,
nodes_phase=(0, 1),
nodes=(Node.END, Node.END),
)

penalty_type(
penalty[0],
[
PenaltyController(ocp, ocp.nlp[0], [], [], [], [], [], p, s, [], 0),
PenaltyController(ocp, ocp.nlp[0], [], [], [], [], [], p, s, [], 0),
],
)
res = get_penalty_value(ocp, penalty[0], t, x, u, p, s)

np.testing.assert_almost_equal(res, np.array(0.2))


@pytest.mark.parametrize("phase_dynamics", [PhaseDynamics.SHARED_DURING_THE_PHASE, PhaseDynamics.ONE_PER_NODE])
Expand Down