Skip to content

[ECCV 2024] Official implementation of "RangeLDM: Fast Realistic LiDAR Point Cloud Generation"

License

Notifications You must be signed in to change notification settings

WoodwindHu/RangeLDM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RangeLDM

[ECCV 2024] Official implementation of "RangeLDM: Fast Realistic LiDAR Point Cloud Generation"

Models

KITTI360

Model MMD FRD JSD Checkpoint Generated Point Clouds
RangeLDM 3.07 × 10^−5 1074.9 0.045 [PKU Disk]
(115MB)
[1k samples]
RangeDM 4.14 × 10^−5 899.0 0.040 [PKU Disk]
(401MB)
[1k samples]

nuScenes

Model MMD JSD Checkpoint Generated Point Clouds
RangeLDM 1.9 × 10^−4 0.054 [PKU Disk]
(153MB)
[1k samples]

Train

VAE

cd vae
python main.py --base configs/kitti360.yaml

LDM

cd ldm
accelerate launch train_unconditional.py --cfg configs/RangeLDM.yaml # for unconditional generation
accelerate launch train_conditional.py --cfg configs/upsample.yaml # for conditional generation

Evaluation

see metrics/metrics.md

Citation

If you find our work useful, please cite:

@article{hu2024rangeldm,
  title={RangeLDM: Fast Realistic LiDAR Point Cloud Generation},
  author={Hu, Qianjiang and Zhang, Zhimin and Hu, Wei},
  journal={arXiv preprint arXiv:2403.10094},
  year={2024}
}

About

[ECCV 2024] Official implementation of "RangeLDM: Fast Realistic LiDAR Point Cloud Generation"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages