Skip to content

Latest commit

 

History

History
44 lines (36 loc) · 1.72 KB

README.md

File metadata and controls

44 lines (36 loc) · 1.72 KB

RangeLDM

[ECCV 2024] Official implementation of "RangeLDM: Fast Realistic LiDAR Point Cloud Generation"

Models

KITTI360

Model MMD FRD JSD Checkpoint Generated Point Clouds
RangeLDM 3.07 × 10^−5 1074.9 0.045 [PKU Disk]
(115MB)
[1k samples]
RangeDM 4.14 × 10^−5 899.0 0.040 [PKU Disk]
(401MB)
[1k samples]

nuScenes

Model MMD JSD Checkpoint Generated Point Clouds
RangeLDM 1.9 × 10^−4 0.054 [PKU Disk]
(153MB)
[1k samples]

Train

VAE

cd vae
python main.py --base configs/kitti360.yaml

LDM

cd ldm
accelerate launch train_unconditional.py --cfg configs/RangeLDM.yaml # for unconditional generation
accelerate launch train_conditional.py --cfg configs/upsample.yaml # for conditional generation

Evaluation

see metrics/metrics.md

Citation

If you find our work useful, please cite:

@article{hu2024rangeldm,
  title={RangeLDM: Fast Realistic LiDAR Point Cloud Generation},
  author={Hu, Qianjiang and Zhang, Zhimin and Hu, Wei},
  journal={arXiv preprint arXiv:2403.10094},
  year={2024}
}