Install all python packages for evaluation with conda environment setup file:
conda env create -f environment.yml
conda activate lidar3
Running FID requires downloading the 1024 backbone file for rangenet++ the following link and extracting it to the folder rangenetpp/lidar_bonnetal_master/darknet53-1024. This model is provided by the RangeNet++ repository. Finally, lidargen needs to be run with the --fid option. This can be done by running the following commands:
curl -L http://www.ipb.uni-bonn.de/html/projects/bonnetal/lidar/semantic/models/darknet53-1024.tar.gz --output darknet53-1024.tar.gz
tar -xzvf darknet53-1024.tar.gz
mv darknet53-1024/backbone rangenetpp/lidar_bonnetal_master/darknet53-1024/
rm darknet53-1024.tar.gz
rm -r darknet53-1024
Evaluate kitti360 unconditional generation:
export KITTI360_DATASET=/path/to/dataset/KITTI-360/
python metric.py --mmd --jsd --fid --exp path_to_generated_bin_files
Evaluate kitti360 upsampling generation:
export KITTI360_DATASET=/path/to/dataset/KITTI-360/
python metric.py --iou --accuracy --mae --exp path_to_generated_bin_files
Evaluate nuScenes unconditional generation:
export NUSCENES_DATASET=/path/to/dataset/NUSCENES/
python metric.py --mmd --jsd --nus --exp path_to_generated_bin_files