We proposed a representation augmentation method to improve the model performance in federated learning with feature shift across client local data. [PDF]
See the requirements.txt for environment configuration.
pip install -r requirements.txt
Download the benchmark datasets using the provided script
python datasets/dataset_download.py --dataset="Digits" --data_dir=$PATH_TO_DATASETS$
python datasets/dataset_download.py --dataset="PACS" --data_dir=$PATH_TO_DATASETS$
python datasets/dataset_download.py --dataset="OfficeHome" --data_dir=$PATH_TO_DATASETS$
python main.py --dataset=$DATASET$ --dataset_dir=$PATH_TO_DATASETS$ --log_dir=$PATH_TO_LOG$
python eval.py --dataset=$DATASET$ --model_dir=$PATH_TO_MODEL$ --dataset_dir=$PATH_TO_DATASETS$
@InProceedings{Chen_2023_ICCV,
author = {Chen, Haokun and Frikha, Ahmed and Krompass, Denis and Gu, Jindong and Tresp, Volker},
title = {FRAug: Tackling Federated Learning with Non-IID Features via Representation Augmentation},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
month = {October},
year = {2023},
pages = {4849-4859}
}