-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
240 lines (205 loc) · 9.64 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch.nn as nn
import os
import torch
import torch.utils.data as data
import random
import argparse
from datasets import PACS, OfficeHome, VLCS, Digits, miniDomainNet, DomainNet_FedBN
from utils.dataset_utils import *
from utils.main_utils import *
import numpy as np
import json
import collections
#for efficiency
global_valsets = {}
global_testsets = {}
def collate_fn(batch):
imgs, labels = zip(*batch)
imgs = torch.stack(imgs).cuda()
labels = torch.stack(labels).cuda()
return imgs, labels
def evaluate(model, mode, domain):
if 'test' in mode:
set = global_testsets[domain]
elif 'val' in mode:
set = global_valsets[domain]
loader = torch.utils.data.DataLoader(dataset=set, batch_size=128, collate_fn=collate_fn)
if isinstance(model, list):
F = model[0].eval()
C = model[1].eval()
else:
model.eval()
ans = 0
tot = 0
with torch.no_grad():
for (imgs, labels) in loader:
if isinstance(model, list):
o = F(imgs).squeeze(-1).squeeze(-1)
o = C(o).argmax(1)
else:
o = model(imgs).argmax(1)
tmp_out = labels==o
ans += int(tmp_out.sum())
tot += imgs.shape[0]
return ans/tot
def eval_on_one_setting(args):
print('--------------------------------------------------')
print('path:', args.model_dir, 'evaluation_type:', args.eval_type)
acc = collections.OrderedDict()
std = {}
count_d = {}
count_all = {}
flag_for_print = False
results = ""
use_best_fc = False
for trial in os.listdir(args.model_dir):
if not 'trial' in trial: continue
backbone = trial.split('_')[1]
args.num_class = get_class_number(args.dataset)
args.source_domains = get_source_domain_names(args.dataset)
lists = trial.split('_')
if False:
flag_for_print = True
setting_default = trial
acc[setting_default] = {}
count_d[setting_default] = 0
for idx, d in enumerate(args.source_domains):
temp_acc = 0
for j in range(int(lists[-2])):
model_snapshot_dir = os.path.join(args.model_dir, trial, f'user_{d}_{j}.pt')
if not os.path.exists(model_snapshot_dir):
continue
T = torch.load(model_snapshot_dir)
temp_acc += evaluate(T, 'val', d)*100
acc[setting_default][d] = temp_acc/int(lists[-2])
count_d[setting_default] += 1
continue
if not 'Single' in lists:
#evaluate with local model
flag_for_print = True
setting_default = trial
acc[setting_default] = {}
count_d[setting_default] = 0
for idx, d in enumerate(args.source_domains):
model_snapshot_dir = os.path.join(args.model_dir, trial, f'user_{d}_0.pt')
if not os.path.exists(model_snapshot_dir):
model_snapshot_dir = os.path.join(args.model_dir, trial, f'user_{d}.pt')
if not os.path.exists(model_snapshot_dir): continue
T = torch.load(model_snapshot_dir)
setting_all = setting_default.replace('42', 'allseed').replace('84', 'allseed').replace('168', 'allseed').replace('210', 'allseed')
if not setting_all in acc.keys():
acc[setting_all] = {}
if not d in acc[setting_all].keys():
acc[setting_all][d] = []
temp_acc = evaluate(T, 'val', d)*100
acc[setting_all][d].append(temp_acc)
# count_d[setting_all] += 1
acc[setting_default][d] = temp_acc
count_d[setting_default] += 1
continue
for target_domain in args.source_domains:
if target_domain in lists:
break
elif target_domain=='art_painting' and 'art' in lists:
break
elif target_domain=='Real_World' and 'Real' in lists:
break
args.source_domains.remove(target_domain)
model_snapshot_dir = os.path.join(args.model_dir, trial, 'server.pt')
if not os.path.exists(model_snapshot_dir): continue
T = torch.load(model_snapshot_dir)
setting_default = trial.replace(target_domain, 'domain')
if not setting_default in acc.keys():
acc[setting_default] = {}
count_d[setting_default] = 0
if 'source' in args.eval_type:
#evaluate on source domain validation set.
for d in args.source_domains:
temp_acc = evaluate(T, args.eval_type, d)
print(f'{trial} evaluated on {args.eval_type} of {d}:', temp_acc)
else:
temp_acc = evaluate(T, args.eval_type, target_domain)*100
acc[setting_default][target_domain] = temp_acc
count_d[setting_default] += 1
setting_all = setting_default.replace('42', 'allseed').replace('84', 'allseed').replace('168', 'allseed').replace('210', 'allseed')
if not setting_all in acc.keys():
acc[setting_all] = {}
if not target_domain in acc[setting_all].keys():
acc[setting_all][target_domain] = []
print(setting_all)
acc[setting_all][target_domain].append(temp_acc)
if 'target' in args.eval_type or flag_for_print:
portion = {}
for setting_default in acc.keys():
method = setting_default.split('_')[1]
# if 14>len(setting_default.split('_')):
# p = setting_default.split('_')[-1]
# else:
# p = setting_default.split('_')[14]
# for d in acc[setting_default].keys():
# tname = d+ '_' + method
# if tname not in portion.keys():
# portion[tname] = {}
# portion[tname][p] = acc[setting_default][d]
if 'allseed' in setting_default:
print(setting_default)
acc_all = []
for k in sorted(acc[setting_default].keys()):
ct = len(acc[setting_default][k])
avg = np.mean(acc[setting_default][k])
std = np.std(acc[setting_default][k])
print(k, ":", avg, std)
for i in range(ct):
if i>=len(acc_all): acc_all.append(0)
acc_all[i] += acc[setting_default][k][i]
acc[setting_default][k].append(avg)
acc[setting_default][k].append(std)
acc_all = [i/len(acc[setting_default].keys()) for i in acc_all]
print('avg:', np.mean(acc_all), np.std(acc_all))
else:
if not count_d[setting_default]: continue
print(setting_default)
print(sorted(acc[setting_default].items(), key=lambda x:x[0]))
acc_sum = 0
for d in acc[setting_default].keys():
acc_sum += acc[setting_default][d]
print('avg:', acc_sum/count_d[setting_default])
acc[setting_default]['avg'] = acc_sum/count_d[setting_default]
def main():
parser = argparse.ArgumentParser(description='PyTorch Generator training code')
parser.add_argument('--dataset', type=str, help="name of the dataset.")
parser.add_argument('--dataset_dir', type=str, help="directory of the dataset.")
parser.add_argument('--model_dir', type=str, help="directory of the saved model.")
parser.add_argument('--eval_type', type=str, default="target_testset", help='how to evaluate the model')
parser.add_argument('--seed', type=int, default=42)
args = parser.parse_args()
global global_valsets
global global_testsets
dataset_mapping = {
'PACS': PACS,
'VLCS': VLCS,
'OfficeHome': OfficeHome,
'Digits': Digits,
'DomainNet_FedBN': DomainNet_FedBN,
'miniDomainNet': miniDomainNet,
}
assert args.dataset in dataset_mapping.keys()
dataset = dataset_mapping[args.dataset]
args.eval_batch_size = 128
args.source_domains = get_source_domain_names(args.dataset)
args.img_size = get_image_size(args.dataset)
args.dataset_dir = os.path.join(args.dataset_dir, args.dataset)
for d in args.source_domains:
if args.dataset=='Digits':
global_valsets[d] = dataset(args.dataset_dir, mode = 'val', img_size=args.img_size, domain=d)
global_testsets[d] = dataset(args.dataset_dir, mode = 'test', img_size=args.img_size, domain=d)
else:
trainset = dataset(args.dataset_dir, mode = 'train', img_size=args.img_size, domain=d)
len_valset = int(len(trainset) * 0.1) #train: val = 9:1, split the original trainset for model selection
trainset_base, valset = random_split(trainset, [len(trainset)-len_valset, len_valset],
generator=torch.Generator().manual_seed(args.seed)) #fix the split
global_valsets[d] = valset
global_testsets[d] = dataset(args.dataset_dir, mode = 'test', img_size=args.img_size, domain=d)
eval_on_one_setting(args)
if __name__=='__main__':
main()