-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathray_baselines.py
252 lines (220 loc) · 10.6 KB
/
ray_baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import torchvision
import torch.nn as nn
import os
import torch
import torchvision.transforms as tfs
import torch.utils.data as data
import random
import argparse
from datasets import PACS, OfficeHome, VLCS, Digits, miniDomainNet, DomainNet_FedBN
from utils.main_utils import *
from utils.dataset_utils import *
import ray
from ray import tune
from torch.utils.data import ConcatDataset, random_split
import time
def evaluate(model, loader):
model.eval()
ans = 0
tot = 0
with torch.no_grad():
for (imgs, labels) in loader:
o = model(imgs).argmax(1)
tmp_out = labels==o
ans += int(tmp_out.sum())
tot += imgs.shape[0]
return ans/tot
def get_train_val_split(dataset, config, d, portion):
trainset = dataset(config['dataset_dir'], mode = 'train', img_size=config['img_size'], domain=d)
len_valset = int(len(trainset) * 0.1) #train: val = 9:1, split the original trainset for model selection
trainset_base, valset = random_split(trainset, [len(trainset)-len_valset, len_valset],
generator=torch.Generator().manual_seed(config['seed'])) #fix the split
len_trainset_portion = int(len(trainset_base)*portion)
trainset_portion, _= random_split(trainset_base, [len_trainset_portion, len(trainset_base)-len_trainset_portion],
generator=torch.Generator().manual_seed(config['seed'])) #fix the split
return trainset_portion, valset
def get_config(args):
train_args = {}
train_args['algorithm'] = args.algorithm
train_args['dataset'] = args.dataset
train_args['img_size'] = args.img_size
train_args['dataset_dir'] = args.dataset_dir
train_args['max_ep_train'] = args.max_ep_train
train_args['student_backbone'] = args.model
train_args['num_class'] = get_class_number(train_args['dataset'])
train_args['source_domains'] = get_source_domain_names(train_args['dataset'])
if train_args['dataset'] == 'Digits':
train_args['eval_batch_size'] = 512
train_args['teacher_backbone'] = 'CNN_Digits'
train_args['batch_size'] = tune.grid_search([256])
train_args['lr'] = tune.grid_search([0.01])
train_args['portion'] = tune.grid_search([0.05, 0.1, 0.2, 0.5, 1.0])
elif train_args['dataset'] == 'miniDomainNet':
train_args['eval_batch_size'] = 128
train_args['teacher_backbone'] = 'resnet18'
train_args['batch_size'] = tune.grid_search([128])
train_args['lr'] = tune.grid_search([0.01])
train_args['portion'] = tune.grid_search([0.1])
elif train_args['dataset'] == 'DomainNet_FedBN':
train_args['eval_batch_size'] = 128
train_args['teacher_backbone'] = 'resnet18'
train_args['batch_size'] = tune.grid_search([64])
train_args['lr'] = tune.grid_search([0.01])
train_args['portion'] = tune.grid_search([0.1])
else:
train_args['eval_batch_size'] = 128
train_args['teacher_backbone'] = 'resnet18'
train_args['batch_size'] = tune.grid_search([64])
train_args['lr'] = tune.grid_search([0.01])
train_args['portion'] = tune.grid_search([0.2, 0.4, 0.6, 0.8, 1.0])
train_args['seed'] = tune.grid_search([84, 168, 210])
if train_args['algorithm']=='Single':
train_args['target_domain'] = tune.grid_search(train_args['source_domains'])
else:
train_args['target_domain'] = None
train_args['hps_list'] = ['algorithm', 'dataset', 'teacher_backbone', 'target_domain', 'lr', 'batch_size', 'seed', 'portion']
return train_args
def run_one_trial(config, checkpoint_dir=None):
setup_seed(config['seed'])
trainsets = []
valsets = []
best_acc = 0
dataset_mapping = {
'PACS': PACS,
'VLCS': VLCS,
'OfficeHome': OfficeHome,
'Digits': Digits,
'miniDomainNet': miniDomainNet,
'DomainNet_FedBN': DomainNet_FedBN,
}
assert config['dataset'] in dataset_mapping.keys()
dataset = dataset_mapping[config['dataset']]
if config['target_domain']:
best_acc= 0
trainset = dataset(config['dataset_dir'], mode = 'train', img_size=config['img_size'], domain=config['target_domain'])
trainset_portion, valset = get_train_val_split(dataset, config, config['target_domain'], config['portion'])
valset_loader = torch.utils.data.DataLoader(dataset=valset, shuffle=True, batch_size=config['eval_batch_size'], collate_fn=trainset.collate_fn)
trainset_loader = torch.utils.data.DataLoader(dataset=trainset_portion, shuffle=True, batch_size=config['batch_size'], collate_fn=trainset.collate_fn)
else:
best_local_acc = [0 for _ in range(len(config['source_domains']))]
trainsets_portion = []
valset_loaders = []
for d in config['source_domains']:
trainset = dataset(config['dataset_dir'], mode = 'train', img_size=config['img_size'], domain=d)
trainset_portion, valset = get_train_val_split(dataset, config, d, config['portion'])
trainsets_portion.append(trainset_portion)
valset_loader = torch.utils.data.DataLoader(dataset=valset, shuffle=True, batch_size=config['eval_batch_size'], collate_fn=trainset.collate_fn)
valset_loaders.append(valset_loader)
trainset_portion = ConcatDataset(trainsets_portion)
trainset_loader = torch.utils.data.DataLoader(dataset=trainset_portion, shuffle=True, batch_size=config['batch_size'], collate_fn=trainset.collate_fn)
#########Here start from ImageNet pretrained network.##################
net = create_model(config['teacher_backbone'], config['num_class'], pretrained=True)
net = net.cuda().train()
# net = torch.load(f"")
# net = net.cuda().train()
# for k, v in net.named_parameters():
# if not 'fc' in k and 'resnet' in config['teacher_backbone']:
# v.requires_grad=False
# if 'classifier' not in k and 'resnet' not in config['teacher_backbone']:
# v.requires_grad=False
config['trial_name'] = trial_name_string(config)
config['model_path'] = os.path.join(config['logs_local_dir'], config['log_run_name'], config['trial_name'])
optimizer = torch.optim.SGD(net.parameters(), weight_decay=0.0005, momentum=.9, nesterov=True, lr=config['lr'])
# lr_scheduler = lr_cosine_policy(config['lr'], 1 * len(trainset_loader), config['max_ep_train'] * len(trainset_loader))
taskL = nn.CrossEntropyLoss()
#scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [int(max_ep*0.6), int(max_ep*0.8)], gamma=0.9)
it = 0
metrics = {}
stop_criterion = 0
for ep in range(config['max_ep_train']):
for batch in trainset_loader:
it += 1
net.train()
# cur_lr = lr_scheduler(optimizer, it, it)
imgs, labels = batch
optimizer.zero_grad()
outputs = net(imgs)
targets = labels
L = taskL(outputs, targets)
L.backward()
optimizer.step()
metrics['loss'] = float(L)
# metrics['lr'] = float(cur_lr)
if stop_criterion>15:
tune.report(done=True)
if it%20==0:
if config['target_domain']:
val_acc = evaluate(net, valset_loader)
if best_acc < float(val_acc):
torch.save(net, os.path.join(config['model_path'], f"server.pt"))
best_acc = val_acc
stop_criterion = 0
else:
stop_criterion += 1
metrics['acc'] = float(val_acc)
else:
for idx, valset_loader in enumerate(valset_loaders):
val_acc = evaluate(net, valset_loader)
if best_local_acc[idx] < float(val_acc):
torch.save(net, os.path.join(config['model_path'], f"user_{config['source_domains'][idx]}.pt"))
best_local_acc[idx] = val_acc
metrics[f'acc_{idx}'] = float(val_acc)
tune.report(**metrics)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, default="PACS")
parser.add_argument("--img_size", type=int, default=224)
parser.add_argument("--algorithm", type=str)
parser.add_argument("--dataset_dir", type=str, default='/home/')
parser.add_argument("--gpu_per_trial", type=float, default=0.5)
parser.add_argument("--cpu_per_trial", type=float, default=2.0)
parser.add_argument("--use_aws_server", type=bool, default=False)
parser.add_argument("--device", type=str, default="cuda:0", choices=["cpu","cuda"], help="run device (cpu | cuda)")
parser.add_argument("--model", type=str, default="resnet18")
parser.add_argument("--max_ep_train", type=int, default=40)
args = parser.parse_args()
config = get_config(args)
if args.use_aws_server:
n_cpu_per_trial = os.cpu_count()
resources_per_trial = {
"cpu": n_cpu_per_trial,
"gpu": 1 if torch.cuda.is_available() else 0,
}
try:
on_autoscale_cluster = False
ray.init(
address="auto",
_redis_password=os.getenv(
"RAY_REDIS_PASSWD", ray.ray_constants.REDIS_DEFAULT_PASSWORD
),
)
on_autoscale_cluster = True
except ConnectionError as e:
print(f"ConnectionError: {e} --> Starting ray in single node mode.")
config['logs_local_dir'] = "/home/ubuntu/logs"
else:
on_autoscale_cluster = False
config['logs_local_dir'] = "/home/ubuntu/fedlda/logs"
ray.init()
resources_per_trial = {"gpu": args.gpu_per_trial, "cpu": args.cpu_per_trial}
try:
config['log_run_name'] = config['algorithm'] + '_' + config['dataset'] + '_' +time.strftime('%Y%m%d_%H%M%S',time.localtime(time.time()))
analysis = tune.run(
run_one_trial,
config = config,
name = config['log_run_name'],
resources_per_trial= resources_per_trial,
local_dir = config['logs_local_dir'],
# queue_trials=True if on_autoscale_cluster else False,
raise_on_failed_trial=False if on_autoscale_cluster else True,
trial_name_creator=trial_name_string,
trial_dirname_creator=trial_name_string,
#resume = 'ERRORED_ONLY',
#name = 'train_one_setting_2021-09-09_20-10-52',
)
finally:
if on_autoscale_cluster:
print("Downscaling cluster in 2 minutes...")
time.sleep(120) # Wait for any syncing to complete.
if __name__=='__main__':
main()