Skip to content

zhengchuanpan/STJGCN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Spatio-Temporal Joint Convolutional Network for Traffic Forecasting

Structure

  • config: configurations of STJGCN
  • data: includes the PEMSD4 and PEMSD8 datasets used in our experiments
  • logs: logs during training or testing
  • model: saved models (we also provide pre-trained models for both datasets)
  • model.py: implement of our STJGCN model
  • utils.py: tools, including data processing, evaluation metrics, etc.
  • tf_utils.py: tensorflow-based tools
  • train.py: code of training STJGCN
  • test.py: code of testing STJGCN

Requirements

Python 3.7.10, tensorflow 1.14.0, numpy 1.16.4, scipy 1.2.1, argparse and configparser

Training

To train STJGCN on the PeMSD4 or PeMSD8 dataset, run:

python train.py --config config/STJGCN_PeMSD4.conf
python train.py --config config/STJGCN_PeMSD8.conf

Evaluation

To evaluate STJGCN on the PeMSD4 or PeMSD8 dataset, run:

python test.py --config config/STJGCN_PeMSD4.conf
python test.py --config config/STJGCN_PeMSD8.conf

Results

We provide pre-trained models on both datasets, which achieve the following performance:

Dataset MAE RMSE MAPE
PeMSD4 18.79 30.38 11.87%
PeMSD8 14.50 23.66 9.07%

Note that this result is different to (better than) Table 1 in the paper, because we report the average error over 10 runs in Table 1.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages