- config: configurations of STJGCN
- data: includes the PEMSD4 and PEMSD8 datasets used in our experiments
- logs: logs during training or testing
- model: saved models (we also provide pre-trained models for both datasets)
- model.py: implement of our STJGCN model
- utils.py: tools, including data processing, evaluation metrics, etc.
- tf_utils.py: tensorflow-based tools
- train.py: code of training STJGCN
- test.py: code of testing STJGCN
Python 3.7.10, tensorflow 1.14.0, numpy 1.16.4, scipy 1.2.1, argparse and configparser
To train STJGCN on the PeMSD4 or PeMSD8 dataset, run:
python train.py --config config/STJGCN_PeMSD4.conf
python train.py --config config/STJGCN_PeMSD8.conf
To evaluate STJGCN on the PeMSD4 or PeMSD8 dataset, run:
python test.py --config config/STJGCN_PeMSD4.conf
python test.py --config config/STJGCN_PeMSD8.conf
We provide pre-trained models on both datasets, which achieve the following performance:
Dataset | MAE | RMSE | MAPE |
---|---|---|---|
PeMSD4 | 18.79 | 30.38 | 11.87% |
PeMSD8 | 14.50 | 23.66 | 9.07% |
Note that this result is different to (better than) Table 1 in the paper, because we report the average error over 10 runs in Table 1.