Skip to content

Latest commit

 

History

History
46 lines (32 loc) · 1.36 KB

README.md

File metadata and controls

46 lines (32 loc) · 1.36 KB

Spatio-Temporal Joint Convolutional Network for Traffic Forecasting

Structure

  • config: configurations of STJGCN
  • data: includes the PEMSD4 and PEMSD8 datasets used in our experiments
  • logs: logs during training or testing
  • model: saved models (we also provide pre-trained models for both datasets)
  • model.py: implement of our STJGCN model
  • utils.py: tools, including data processing, evaluation metrics, etc.
  • tf_utils.py: tensorflow-based tools
  • train.py: code of training STJGCN
  • test.py: code of testing STJGCN

Requirements

Python 3.7.10, tensorflow 1.14.0, numpy 1.16.4, scipy 1.2.1, argparse and configparser

Training

To train STJGCN on the PeMSD4 or PeMSD8 dataset, run:

python train.py --config config/STJGCN_PeMSD4.conf
python train.py --config config/STJGCN_PeMSD8.conf

Evaluation

To evaluate STJGCN on the PeMSD4 or PeMSD8 dataset, run:

python test.py --config config/STJGCN_PeMSD4.conf
python test.py --config config/STJGCN_PeMSD8.conf

Results

We provide pre-trained models on both datasets, which achieve the following performance:

Dataset MAE RMSE MAPE
PeMSD4 18.79 30.38 11.87%
PeMSD8 14.50 23.66 9.07%

Note that this result is different to (better than) Table 1 in the paper, because we report the average error over 10 runs in Table 1.