- KITTI dataset
- image_2 (.png) and ground truth poses (.txt) are required.
- download link
- image_2 (.png) and ground truth poses (.txt) are required.
${ROOT}
└── data/
└── kitti/
└── 00/
└── image_2/
└── poses.txt
└── pittsburgh/
└── netvlad/
└── checkpoints/
└── lseg/
└── codebook.npy
└── text_embedding.npy
└── sripts/
└── checkpoints/
└── demo_e200.ckpt
dataset
: Dataset to use. (default:pittsburgh
, options:pittsburgh
,kitti
)
python run_boq.py --dataset=pittsburgh --split=val
dataset
: Dataset to use. (default:pittsburgh
, options:pittsburgh
,kitti
)
python run_boq.py --dataset=kitti
mode
: Select mode. (default:train
, options:train
,test
,cluster
)resume
: Path to load checkpoint from, for resuming training or testing.dataset
: Dataset to use. (default:pittsburgh
, options:pittsburgh
,kitti
)random
: Randomize dataset for test. (default:False
)extract_dataset
: Extract partial dataset from whole dataset. (default:False
)
python run_netvlad.py --split=val --mode=test --resume=./netvlad --dataset=pittsburgh
- Use image_2 for the test.
mode
: Select mode. (default:train
, options:train
,test
,cluster
)resume
: Path to load checkpoint from, for resuming training or testing.dataset
: Dataset to use. (default:pittsburgh
, options:pittsburgh
,kitti
)random
: Randomize dataset for test. (default:False
)
python run_netvlad.py --split=val --mode=test --resume=./netvlad --dataset=kitti
python run_dbow.py
- Input custom label set to create text embedding.
cd <path to repository>
python build_text_embedding.py
data_path
: Path to data. (default:./data
)dataset
: Dataset to use. (default:pittsburgh
, options:pittsburgh
,kitti
)random
: Randomize dataset for test. (default:False
)build_codebook
: IfTrue
, generate codebook for BoW. IfFalse
calculate recall for query images. (default:False
)use_codebook
: IfTrue
, use predefined codebook. (default:False
)extract_dataset
: Extract partial dataset from whole dataset. (default:False
)dynamic_objects
: Index of dynamic objects within text embeddingsave_log
: Save log messages (default:False
)
cd <path to repository>
python run_vlpr.py --dataset=pittsburgh
# ex) python run_vlpr.py --dataset=pittsburgh --dynamic_objects 7 8 9 10 11 1 18 19 20 21 22 28
data_path
: Path to data. (default:./data
)dataset
: Dataset to use. (default:pittsburgh
, options:pittsburgh
,kitti
)random
: Randomize dataset for test. (default:False
)build_codebook
: IfTrue
, generate codebook for BoW. IfFalse
calculate recall for query images. (default:False
)use_codebook
: IfTrue
, use predefined codebook. (default:False
)extract_dataset
: Extract partial dataset from whole dataset. (default:False
)dynamic_objects
: Index of dynamic objects within text embeddingsave_log
: Save log messages (default:False
)
cd <path to repository>
python run_vlpr.py --dataset=kitti
# ex) python run_vlpr.py --dataset=kitti --dynamic_objects 7 8 9 10 11 12 18 19 20 21 22 28
- Visualization of KITTI 00 Sequence (000001)
image_embedding_file
: Path to image embedding filetext_embedding_file
: Path to text embedding filedynamic_objects
: Index of dynamic objects within text embedding
python visualize_cluster_centroid.py
# ex) python visualize_cluster_centroid.py --dynamic_objects 7 8 9 10 11 12 18 19 20 21 22 28