Context-based Visual Language Place Recognition
KITTI dataset
image_2 (.png) and ground truth poses (.txt) are required.
download link
${ROOT}
└── data/
└── kitti/
└── 00/
└── image_2/
└── poses.txt
└── pittsburgh/
└── netvlad/
└── checkpoints/
└── lseg/
└── codebook.npy
└── text_embedding.npy
└── sripts/
└── checkpoints/
└── demo_e200.ckpt
dataset
: Dataset to use. (default: pittsburgh
, options: pittsburgh
, kitti
)
python run_boq.py --dataset=pittsburgh --split=val
dataset
: Dataset to use. (default: pittsburgh
, options: pittsburgh
, kitti
)
python run_boq.py --dataset=kitti
mode
: Select mode. (default: train
, options: train
, test
, cluster
)
resume
: Path to load checkpoint from, for resuming training or testing.
dataset
: Dataset to use. (default: pittsburgh
, options: pittsburgh
, kitti
)
random
: Randomize dataset for test. (default: False
)
extract_dataset
: Extract partial dataset from whole dataset. (default: False
)
python run_netvlad.py --split=val --mode=test --resume=./netvlad --dataset=pittsburgh
Use image_2 for the test.
mode
: Select mode. (default: train
, options: train
, test
, cluster
)
resume
: Path to load checkpoint from, for resuming training or testing.
dataset
: Dataset to use. (default: pittsburgh
, options: pittsburgh
, kitti
)
random
: Randomize dataset for test. (default: False
)
python run_netvlad.py --split=val --mode=test --resume=./netvlad --dataset=kitti
Input custom label set to create text embedding.
cd < path to repository>
python build_text_embedding.py
data_path
: Path to data. (default: ./data
)
dataset
: Dataset to use. (default: pittsburgh
, options: pittsburgh
, kitti
)
random
: Randomize dataset for test. (default: False
)
build_codebook
: If True
, generate codebook for BoW. If False
calculate recall for query images. (default: False
)
use_codebook
: If True
, use predefined codebook. (default: False
)
extract_dataset
: Extract partial dataset from whole dataset. (default: False
)
dynamic_objects
: Index of dynamic objects within text embedding
save_log
: Save log messages (default: False
)
cd < path to repository>
python run_vlpr.py --dataset=pittsburgh
# ex) python run_vlpr.py --dataset=pittsburgh --dynamic_objects 7 8 9 10 11 1 18 19 20 21 22 28
data_path
: Path to data. (default: ./data
)
dataset
: Dataset to use. (default: pittsburgh
, options: pittsburgh
, kitti
)
random
: Randomize dataset for test. (default: False
)
build_codebook
: If True
, generate codebook for BoW. If False
calculate recall for query images. (default: False
)
use_codebook
: If True
, use predefined codebook. (default: False
)
extract_dataset
: Extract partial dataset from whole dataset. (default: False
)
dynamic_objects
: Index of dynamic objects within text embedding
save_log
: Save log messages (default: False
)
cd < path to repository>
python run_vlpr.py --dataset=kitti
# ex) python run_vlpr.py --dataset=kitti --dynamic_objects 7 8 9 10 11 12 18 19 20 21 22 28
Visualize Centroid of Cluster
Visualization of KITTI 00 Sequence (000001)
image_embedding_file
: Path to image embedding file
text_embedding_file
: Path to text embedding file
dynamic_objects
: Index of dynamic objects within text embedding
python visualize_cluster_centroid.py
# ex) python visualize_cluster_centroid.py --dynamic_objects 7 8 9 10 11 12 18 19 20 21 22 28