Official experiment repo for the "A Sober Look at LLMs for Material Discovery" paper (ICML 2024).
Tip
If you just want to use the method as a library, check out the sister repo: https://github.com/wiseodd/lapeft-bayesopt.
Important
Note that the ordering is important.
- Install PyTorch (with CUDA): https://pytorch.org/get-started/locally/
- Install Huggingface libraries and others:
pip install transformers datasets peft tqdm
- Install laplace-torch:
pip install laplace-torch
Cache molecules in
python cache_features.py --feature_type {FEATURE_TYPE} --problem {PROBLEM} --prompt_type {PROMPT_TYPE}
Then, do BO:
python run_fixed_features.py --feature_type {FEATURE_TYPE} --method {METHOD} --randseed {RANDSEED} --problem {PROBLEM}
Similarly for the multiobjective experiments (cache_features_multiobj.py
and run_multiobj.py
).
Simply run the following.
python run_finetuning.py --foundation_model {FOUNDATION_MODEL} --randseed {RANDSEED} --problem {PROBLEM}
See the Python file for the full arguments.
The script is in baselines/run_bolift.py
. It has similar options as the fixed-feature script.
@inproceedings{kristiadi2024sober,
title={A Sober Look at {LLMs} for Material Discovery: {A}re They Actually Good for {B}ayesian Optimization Over Molecules?},
author={Kristiadi, Agustinus and Strieth-Kalthoff, Felix and Skreta, Marta and Poupart, Pascal and Aspuru-Guzik, Al\'{a}n and Pleiss, Geoff},
booktitle={ICML},
year={2024}
}