-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_finetuning.py
436 lines (394 loc) · 14.2 KB
/
run_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import numpy as np
import pandas as pd
import torch
import tqdm
import argparse
import sys
import os
from foundation_models import (
MolFormerRegressor,
RobertaRegressor,
T5Regressor,
GPT2Regressor,
Llama2Regressor,
)
from foundation_models import (
get_molformer_tokenizer,
get_roberta_tokenizer,
get_t5_tokenizer,
get_gpt2_tokenizer,
get_llama2_tokenizer,
)
from llm_bayesopt import LoRALLMBayesOpt
from bayesopt.acqf import ucb, ei, thompson_sampling
from problems.data_processor import (
RedoxDataProcessor,
SolvationDataProcessor,
KinaseDockingDataProcessor,
LaserEmitterDataProcessor,
PhotovoltaicsPCEDataProcessor,
PhotoswitchDataProcessor,
)
from problems.prompting import PromptBuilder
from utils import helpers
from utils.configs import LaplaceConfig, LLMFeatureType
from peft import LoraConfig, get_peft_model
from sklearn.preprocessing import StandardScaler
import math
parser = argparse.ArgumentParser()
parser.add_argument(
"--problem",
choices=["redox-mer", "solvation", "kinase", "laser", "pce", "photoswitch"],
default="redox-mer",
)
parser.add_argument(
"--foundation_model",
default="gpt2-medium",
choices=[
"molformer",
"roberta-large",
"t5-base",
"t5-base-chem",
"gpt2-medium",
"gpt2-large",
"llama-2-7b",
],
)
parser.add_argument(
"--prompt_type",
choices=["single-number", "just-smiles", "completion"],
default="just-smiles",
)
parser.add_argument(
"--laplace_type", choices=["last_layer", "all_layer"], default="all_layer"
)
parser.add_argument("--acqf", choices=["ei", "ucb", "ts"], default="ts")
parser.add_argument("--n_init_data", type=int, default=10)
parser.add_argument("--exp_len", type=int, default=200)
parser.add_argument("--randseed", type=int, default=1)
args = parser.parse_args()
# Molformer expects only SMILES
if args.foundation_model == "molformer":
args.prompt_type = "just-smiles"
np.random.seed(args.randseed)
torch.manual_seed(args.randseed)
if args.foundation_model == "molformer":
tokenizer = get_molformer_tokenizer()
elif "roberta" in args.foundation_model:
tokenizer = get_roberta_tokenizer(args.foundation_model)
elif "t5" in args.foundation_model:
if "chem" in args.foundation_model:
foundation_model_real = "GT4SD/multitask-text-and-chemistry-t5-base-augm"
else:
foundation_model_real = args.foundation_model
tokenizer = get_t5_tokenizer(foundation_model_real)
elif "gpt2" in args.foundation_model:
tokenizer = get_gpt2_tokenizer(args.foundation_model)
elif "llama-2" in args.foundation_model:
tokenizer = get_llama2_tokenizer(args.foundation_model)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# print(tokenizer.pad_token, tokenizer.pad_token_id, tokenizer.eos_token_id)
if args.problem == "redox-mer":
dataset = pd.read_csv("data/redox_mer_with_iupac.csv.gz")
dataset["Ered_orig"] = dataset["Ered"]
y_preprocessor = StandardScaler()
# dataset['Ered'] = y_preprocessor.fit_transform(dataset['Ered'].to_numpy().reshape(-1, 1)).flatten()
OBJ_COL = "Ered" # Preprocessed
OBJ_COL_ORI = "Ered_orig"
MAXIMIZATION = False
prompt_builder = PromptBuilder(kind=args.prompt_type)
data_processor = RedoxDataProcessor(prompt_builder, tokenizer)
elif args.problem == "solvation":
dataset = pd.read_csv("data/redox_mer_with_iupac.csv.gz")
dataset["Gsol_orig"] = dataset["Gsol"]
y_preprocessor = StandardScaler()
# dataset['Gsol'] = y_preprocessor.fit_transform(dataset['Gsol'].to_numpy().reshape(-1, 1)).flatten()
OBJ_COL = "Gsol" # Preprocessed
OBJ_COL_ORI = "Gsol_orig"
MAXIMIZATION = False
prompt_builder = PromptBuilder(kind=args.prompt_type)
data_processor = SolvationDataProcessor(prompt_builder, tokenizer)
elif args.problem == "kinase":
dataset = pd.read_csv("data/enamine10k.csv.gz")
dataset["score_orig"] = dataset["score"]
y_preprocessor = StandardScaler()
# dataset['score'] = y_preprocessor.fit_transform(dataset['score'].to_numpy().reshape(-1, 1)).flatten()
OBJ_COL = "score" # Preprocessed
OBJ_COL_ORI = "score_orig"
MAXIMIZATION = False
prompt_builder = PromptBuilder(kind=args.prompt_type)
data_processor = KinaseDockingDataProcessor(prompt_builder, tokenizer)
elif args.problem == "laser":
dataset = pd.read_csv("data/laser_multi10k.csv.gz")
OBJ_COL = "Fluorescence Oscillator Strength" # Preprocessed
OBJ_COL_ORI = "Fluorescence Oscillator Strength_orig"
dataset[OBJ_COL_ORI] = dataset[OBJ_COL]
y_preprocessor = StandardScaler()
# dataset[OBJ_COL] = y_preprocessor.fit_transform(dataset[OBJ_COL].to_numpy().reshape(-1, 1)).flatten()
MAXIMIZATION = True
prompt_builder = PromptBuilder(kind=args.prompt_type)
data_processor = LaserEmitterDataProcessor(prompt_builder, tokenizer)
elif args.problem == "pce":
dataset = pd.read_csv("data/photovoltaics_pce10k.csv.gz")
OBJ_COL = "pce" # Preprocessed
OBJ_COL_ORI = "pce_orig"
dataset[OBJ_COL_ORI] = dataset[OBJ_COL]
y_preprocessor = StandardScaler()
# dataset[OBJ_COL] = y_preprocessor.fit_transform(dataset[OBJ_COL].to_numpy().reshape(-1, 1)).flatten()
MAXIMIZATION = True
prompt_builder = PromptBuilder(kind=args.prompt_type)
data_processor = PhotovoltaicsPCEDataProcessor(prompt_builder, tokenizer)
elif args.problem == "photoswitch":
dataset = pd.read_csv("data/photoswitches.csv.gz")
SMILES_COL = "SMILES"
OBJ_COL = "Pi-Pi* Transition Wavelength"
OBJ_COL_ORI = "Pi-Pi* Transition Wavelength_orig"
dataset[OBJ_COL_ORI] = dataset[OBJ_COL]
y_preprocessor = StandardScaler()
# dataset[OBJ_COL] = y_preprocessor.fit_transform(dataset[OBJ_COL].to_numpy().reshape(-1, 1)).flatten()
MAXIMIZATION = True
prompt_builder = PromptBuilder(kind=args.prompt_type)
data_processor = PhotoswitchDataProcessor(prompt_builder, tokenizer)
else:
print("Invalid test function!")
sys.exit(1)
# Turn into a maximization problem if necessary
if not MAXIMIZATION:
dataset[OBJ_COL] = -dataset[OBJ_COL]
dataset[OBJ_COL_ORI] = -dataset[OBJ_COL_ORI]
ground_truth_max = dataset[OBJ_COL].max()
ground_truth_max_ori = dataset[OBJ_COL_ORI].max()
print()
print(
f"Test Function: {args.problem}; Foundation Model: {args.foundation_model}; Prompt Type: {args.prompt_type}; Randseed: {args.randseed}"
)
print(
"---------------------------------------------------------------------------------------------------------------"
)
print()
dataset_train = []
while len(dataset_train) < args.n_init_data:
idx = np.random.randint(len(dataset))
# Make sure that the optimum is not included
if dataset.loc[idx][OBJ_COL] >= ground_truth_max:
continue
dataset_train.append(helpers.pop_df(dataset, idx))
def get_model():
if args.foundation_model == "molformer":
model = MolFormerRegressor(tokenizer)
target_modules = ["query", "value"]
elif "roberta" in args.foundation_model:
model = RobertaRegressor(
kind=args.foundation_model,
tokenizer=tokenizer,
reduction=LLMFeatureType.AVERAGE,
)
target_modules = ["query", "value"]
elif "gpt2" in args.foundation_model:
model = GPT2Regressor(
kind=args.foundation_model,
tokenizer=tokenizer,
reduction=LLMFeatureType.AVERAGE,
)
target_modules = ["c_attn"]
elif "llama-2" in args.foundation_model:
model = Llama2Regressor(
kind=args.foundation_model,
tokenizer=tokenizer,
reduction=LLMFeatureType.AVERAGE,
)
target_modules = ["q_proj", "v_proj"]
elif "t5" in args.foundation_model:
if "chem" in args.foundation_model:
model = T5Regressor(
kind="GT4SD/multitask-text-and-chemistry-t5-base-augm",
tokenizer=tokenizer,
reduction=LLMFeatureType.AVERAGE,
)
else:
model = T5Regressor(
kind=args.foundation_model,
tokenizer=tokenizer,
reduction=LLMFeatureType.AVERAGE,
)
target_modules = ["q", "v"]
else:
raise NotImplementedError
config = LoraConfig(
r=4,
lora_alpha=16,
target_modules=target_modules,
lora_dropout=0.1,
bias="none",
modules_to_save=["head"],
)
lora_model = get_peft_model(model, config)
for p in lora_model.base_model.head.original_module.parameters():
p.requires_grad = False
# for n, p in lora_model.named_parameters():
# if p.requires_grad:
# print(n)
return lora_model
# Train + Laplace
if args.laplace_type == "all_layer":
config = LaplaceConfig(
n_epochs=50,
noise_var=0.001,
hess_factorization="kron",
subset_of_weights="all",
marglik_mode="posthoc",
prior_prec_structure="layerwise",
)
else:
config = LaplaceConfig(
n_epochs=30,
noise_var=0.001,
hess_factorization="full",
subset_of_weights="last_layer",
)
if args.problem == "photoswitch":
config.lr = 1e-2
config.lr_lora = 3e-3
APPEND_EOS = args.foundation_model != "molformer" and (
"t5" not in args.foundation_model
)
model = LoRALLMBayesOpt(
get_model,
dataset_train,
data_processor,
dtype="float32",
laplace_config=config,
append_eos=APPEND_EOS,
)
best_y = pd.DataFrame(dataset_train)[OBJ_COL].max()
best_y_ori = pd.DataFrame(dataset_train)[OBJ_COL_ORI].max()
pbar = tqdm.trange(args.exp_len, position=0, colour="green", leave=True)
pbar.set_description(
f"[Best f(x) = {helpers.y_transform(best_y_ori, MAXIMIZATION):.3f}]"
)
trace_best_y = [helpers.y_transform(ground_truth_max_ori, MAXIMIZATION)] * (
args.exp_len + 1
)
trace_timing = [0.0] * (args.exp_len + 1)
trace_acqvals = [-math.inf] * (args.exp_len + 1)
timing_train = []
timing_preds = []
for i in pbar:
# Timing
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start.record()
# BO iteration
dataloader = data_processor.get_dataloader(
dataset, batch_size=16, shuffle=False, append_eos=APPEND_EOS
)
preds, uncerts, labels = [], [], []
acq_vals = []
sub_pbar = tqdm.tqdm(
dataloader,
position=1,
colour="blue",
desc="[Prediction over dataset]",
leave=False,
)
start_pred = torch.cuda.Event(enable_timing=True)
end_pred = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start_pred.record()
for data in sub_pbar:
posterior = model.posterior(data)
f_mean, f_var = posterior.mean, posterior.variance
if args.acqf == "ei":
acq_vals.append(ei(f_mean, f_var, best_y))
elif args.acqf == "ucb":
acq_vals.append(ucb(f_mean, f_var))
else:
acq_vals.append(thompson_sampling(f_mean, f_var))
preds.append(f_mean)
uncerts.append(f_var.sqrt())
labels.append(data["labels"])
end_pred.record()
torch.cuda.synchronize()
timing_preds.append(start_pred.elapsed_time(end_pred) / 1000)
acq_vals = torch.cat(acq_vals, dim=0).cpu().squeeze()
preds, uncerts, labels = (
torch.cat(preds, dim=0).cpu(),
torch.cat(uncerts, dim=0).cpu(),
torch.cat(labels, dim=0),
)
test_loss = torch.nn.MSELoss()(preds, labels).item()
_, idx = acq_vals.topk(k=10)
for l, p, u, a in zip(labels[idx], preds[idx], uncerts[idx], acq_vals[idx]):
print(
f"True: {l.item():.3f}, Mean: {p.item():.3f}, Std: {u.item():.3f}, Acqf: {a.item():.3f}"
)
# input()
# Pick a molecule (a row in the current dataset) that maximizes the acquisition
idx_best = torch.argmax(acq_vals).item()
new_data = helpers.pop_df(dataset, idx_best)
# Update the current best y
if new_data[OBJ_COL] > best_y:
best_y = new_data[OBJ_COL]
best_y_ori = new_data[OBJ_COL_ORI]
print(best_y_ori)
# Early stopping if we already got the max
if best_y >= ground_truth_max:
break
start_train = torch.cuda.Event(enable_timing=True)
end_train = torch.cuda.Event(enable_timing=True)
torch.cuda.synchronize()
start_train.record()
# Update surrogate
model = model.condition_on_observations(new_data)
end_train.record()
torch.cuda.synchronize()
timing_train.append(start_train.elapsed_time(end_train) / 1000)
pbar.set_description(
f"[Best f(x) = {helpers.y_transform(best_y_ori, MAXIMIZATION):.3f}, "
+ f"curr f(x) = {helpers.y_transform(new_data[OBJ_COL_ORI], MAXIMIZATION):.3f}, "
+ f"test MSE: {test_loss:.3f}]"
)
# Save results
end.record()
torch.cuda.synchronize()
timing = start.elapsed_time(end) / 1000
trace_best_y[i + 1] = helpers.y_transform(best_y_ori, MAXIMIZATION)
trace_timing[i + 1] = timing
# print('Train time (avg & sem)', f'{np.mean(timing_train):.1f}', f'{st.sem(timing_train):.1f}')
# print('Preds time (avg & sem)', f'{np.mean(timing_preds):.1f}', f'{st.sem(timing_preds):.1f}')
# Save results
path = f"results/{args.problem}/finetuning/{args.foundation_model}"
if not os.path.exists(path):
os.makedirs(path)
np.save(
f"{path}/timing_train_{args.n_init_data}_{args.acqf}_{args.laplace_type}_{args.randseed}.npy",
timing_train,
)
np.save(
f"{path}/timing_preds_{args.n_init_data}_{args.acqf}_{args.laplace_type}_{args.randseed}.npy",
timing_preds,
)
np.save(
f"{path}/trace_acqvals_{args.n_init_data}_{args.acqf}_{args.laplace_type}_{args.randseed}.npy",
trace_acqvals,
)
if args.foundation_model == "molformer":
np.save(
f"{path}/trace_best_y_{args.n_init_data}_{args.acqf}_{args.laplace_type}_{args.randseed}.npy",
trace_best_y,
)
np.save(
f"{path}/trace_timing_{args.n_init_data}_{args.acqf}_{args.laplace_type}_{args.randseed}.npy",
trace_timing,
)
else:
np.save(
f"{path}/{args.prompt_type}_trace_best_y_{args.n_init_data}_{args.acqf}_{args.laplace_type}_{args.randseed}.npy",
trace_best_y,
)
np.save(
f"{path}/{args.prompt_type}_trace_timing_{args.n_init_data}_{args.acqf}_{args.laplace_type}_{args.randseed}.npy",
trace_timing,
)