-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_data_subsets.py
45 lines (41 loc) · 1.7 KB
/
get_data_subsets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import numpy as np
import pandas as pd
import argparse
import os
parser = argparse.ArgumentParser()
parser.add_argument("--num_samples", type=int, default=200)
parser.add_argument("--randseed", type=int, default=1)
parser.add_argument("--iupac", default=False, action="store_true")
args = parser.parse_args()
SAVE_DIR = "data/random_subset_300"
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
for problem in ["redox-mer", "solvation", "kinase", "laser", "pce", "photoswitch"]:
np.random.seed(args.randseed)
if args.iupac and problem not in ["redox-mer", "solvation"]:
continue
if problem == "redox-mer":
if args.iupac:
dataset = pd.read_csv("data/redox_mer_with_iupac.csv.gz")
save_path = f"{SAVE_DIR}/redox_mer_with_iupac.csv.gz"
else:
dataset = pd.read_csv("data/redox_mer.csv")
save_path = f"{SAVE_DIR}/redox_mer.csv"
elif problem == "solvation":
pass # same data file as redox_mer
elif problem == "kinase":
dataset = pd.read_csv("data/enamine10k.csv.gz")
save_path = f"{SAVE_DIR}/enamine10k.csv.gz"
elif problem == "laser":
dataset = pd.read_csv("data/laser_emitters10k.csv.gz")
save_path = f"{SAVE_DIR}/laser_emitters10k.csv.gz"
elif problem == "pce":
dataset = pd.read_csv("data/photovoltaics_pce10k.csv.gz")
save_path = f"{SAVE_DIR}/photovoltaics_pce10k.csv.gz"
elif problem == "photoswitch":
dataset = pd.read_csv("data/photoswitches.csv.gz")
save_path = f"{SAVE_DIR}/photoswitches.csv.gz"
print("old dataset", dataset)
dataset = dataset.sample(n=300)
print("new dataset", dataset)
dataset.to_csv(save_path)