Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Example task extraction #127

Merged
merged 17 commits into from
Aug 8, 2024
Merged

Example task extraction #127

merged 17 commits into from
Aug 8, 2024

Conversation

Vasilije1990
Copy link
Contributor

@Vasilije1990 Vasilije1990 commented Aug 6, 2024

Summary by CodeRabbit

  • New Features

    • Introduced asynchronous functions for managing graph topologies and generating standardized node IDs, enhancing knowledge graph integration.
    • Added a new function to convert documents into chunks for processing, improving the handling of document data.
    • Implemented a new summarization task that extracts and stores summaries in a vector database.
    • Introduced a function for removing disconnected chunks and a method for checking updates on existing data.
    • Enhanced task definitions for transforming documents into graph representations.
  • Enhancements

    • Improved the flexibility of graph topology management and streamlined node identification processes.
    • Enhanced pipeline capabilities with updated and more specific task implementations for better performance in document processing and chunk management.
    • Streamlined CI/CD workflow configuration for improved reliability in the testing environment.

Copy link
Contributor

coderabbitai bot commented Aug 6, 2024

Warning

Rate limit exceeded

@Vasilije1990 has exceeded the limit for the number of commits or files that can be reviewed per hour. Please wait 0 minutes and 42 seconds before requesting another review.

How to resolve this issue?

After the wait time has elapsed, a review can be triggered using the @coderabbitai review command as a PR comment. Alternatively, push new commits to this PR.

We recommend that you space out your commits to avoid hitting the rate limit.

How do rate limits work?

CodeRabbit enforces hourly rate limits for each developer per organization.

Our paid plans have higher rate limits than the trial, open-source and free plans. In all cases, we re-allow further reviews after a brief timeout.

Please see our FAQ for further information.

Commits

Files that changed from the base of the PR and between 3d1afe7 and 7f9a103.

Walkthrough

The recent updates significantly enhance the management and processing of knowledge graphs through new asynchronous functions and refined task implementations. Key improvements focus on chunk processing, graph topology management, and standardized node identification, leading to greater modularity and efficiency throughout the pipeline.

Changes

Files and Directories Change Summary
cognee/api/v1/tasks/.../graph_ontology.py Introduced async def chunk_to_graph_decomposition() and def generate_node_id(), improving graph topology management and node ID consistency.
cognee/api/v1/cognify/cognify_v2.py Updated run_cognify_pipeline() with new task functions for document processing, graph topology, and chunk management.
cognee/modules/classification/.../classify_text_chunks.py Renamed classify_text_chunks to chunk_naive_llm_classifier, indicating a refined classification method.
cognee/tasks/.../chunk_extract_summary.py Renamed summarize_text_chunks to chunk_extract_summary, enhancing clarity and integrating summarization with vector database storage.
cognee/tasks/.../chunks_into_graph.py Renamed expand_knowledge_graph to chunks_into_graph, focusing on chunk processing within the graph context.
cognee/tasks/.../chunk_remove_disconnected.py Introduced chunk_remove_disconnected, focusing on identifying and removing outdated chunks within the graph database.
cognee/tasks/.../save_chunks_to_store.py Added save_chunks_to_store to manage storage of document chunks, creating structured relationships in the database.
.github/workflows/test_common.yml Simplified CI/CD workflow by removing macOS references, adding PostgreSQL health checks, and improving readiness checks.

Sequence Diagram(s)

sequenceDiagram
    participant Client
    participant CognifyPipeline
    participant GraphOntology
    participant DataChunks

    Client->>CognifyPipeline: run_cognify_pipeline()
    CognifyPipeline->>DataChunks: source_documents_to_chunks()
    DataChunks-->>CognifyPipeline: Return chunks
    CognifyPipeline->>GraphOntology: chunk_to_graph_decomposition()
    GraphOntology-->>CognifyPipeline: Return topology
    CognifyPipeline-->>Client: Complete processing
Loading

Poem

🐇 In the fields of code, where ideas bloom,
New tasks emerge, dispelling the gloom.
With graphs and nodes, they dance and play,
Enhancing our journey in a magical way.
So hop with delight, let knowledge take flight,
For every small change brings future so bright! 🌼


Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media?

Share
Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>.
    • Generate unit testing code for this file.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai generate unit testing code for this file.
    • @coderabbitai modularize this function.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai generate interesting stats about this repository and render them as a table.
    • @coderabbitai show all the console.log statements in this repository.
    • @coderabbitai read src/utils.ts and generate unit testing code.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
    • @coderabbitai help me debug CodeRabbit configuration file.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

CodeRabbit Commands (invoked as PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Additionally, you can add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.

CodeRabbit Configuration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between 80e4f29 and 64f54a3.

Files selected for processing (1)
  • cognee/api/v1/tasks/graph_ontology/graph_ontology.py (1 hunks)
Additional comments not posted (5)
cognee/api/v1/tasks/graph_ontology/graph_ontology.py (5)

10-10: LGTM!

The asynchronous function ontology_task is defined correctly.


11-11: LGTM!

The return statement correctly returns a Task object with the appropriate function, model, and task configuration.


6-6: Verify the import path.

Ensure that the import path cognee.shared.data_models is correct and that the KnowledgeGraph class is necessary for this file.

Verification successful

Verified: The import path is correct and the KnowledgeGraph class is used in the file.

  • The KnowledgeGraph class is defined in cognee/shared/data_models.py.
  • The KnowledgeGraph class is used in cognee/api/v1/tasks/graph_ontology/graph_ontology.py.
Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify the existence of the `KnowledgeGraph` class in the specified path.

# Test: Search for the `KnowledgeGraph` class definition in the specified path.
# Expect: The `KnowledgeGraph` class should be defined in the specified path.
rg --type python -A 5 $'class KnowledgeGraph' cognee/shared/data_models.py

Length of output: 106


Script:

#!/bin/bash
# Description: Verify the existence of the `KnowledgeGraph` class in the specified path.

# Test: Search for the `KnowledgeGraph` class definition in the specified path.
# Expect: The `KnowledgeGraph` class should be defined in the specified path.
rg -A 5 $'class KnowledgeGraph' cognee/shared/data_models.py

Length of output: 267


Script:

#!/bin/bash
# Description: Verify the usage of the `KnowledgeGraph` class in the specified file.

# Test: Search for the usage of the `KnowledgeGraph` class in the specified file.
# Expect: The `KnowledgeGraph` class should be used in the `cognee/api/v1/tasks/graph_ontology/graph_ontology.py` file.
rg 'KnowledgeGraph' cognee/api/v1/tasks/graph_ontology/graph_ontology.py

Length of output: 236


5-5: Verify the import path.

Ensure that the import path cognee.modules.data.extraction.knowledge_graph.establish_graph_topology is correct and that the establish_graph_topology function is necessary for this file.

Verification successful

Verified the import path.

The import path cognee.modules.data.extraction.knowledge_graph.establish_graph_topology is correct, and the establish_graph_topology function is used within the cognee/api/v1/tasks/graph_ontology/graph_ontology.py file.

  • The function establish_graph_topology is defined in the specified path.
  • The function is used in the file.
Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify the existence of the `establish_graph_topology` function in the specified path.

# Test: Search for the `establish_graph_topology` function definition in the specified path.
# Expect: The `establish_graph_topology` function should be defined in the specified path.
rg --type python -A 5 $'def establish_graph_topology' cognee/modules/data/extraction/knowledge_graph/establish_graph_topology.py

Length of output: 160


Script:

#!/bin/bash
# Description: Verify the existence of the `establish_graph_topology` function in the specified path.

# Test: Search for the `establish_graph_topology` function definition in the specified path.
# Expect: The `establish_graph_topology` function should be defined in the specified path.
rg -A 5 $'def establish_graph_topology' cognee/modules/data/extraction/knowledge_graph/establish_graph_topology.py

Length of output: 332


Script:

#!/bin/bash
# Description: Verify the usage of the `establish_graph_topology` function in the specified file.

# Test: Search for the usage of the `establish_graph_topology` function in the specified file.
# Expect: The `establish_graph_topology` function should be used in the specified file.
rg 'establish_graph_topology' cognee/api/v1/tasks/graph_ontology/graph_ontology.py

Length of output: 302


3-3: Verify the import path.

Ensure that the import path cognee.modules.pipelines.tasks.Task is correct and that the Task class is necessary for this file.

Verification successful

The import path is correct and necessary.

The import path cognee.modules.pipelines.tasks.Task is correct, and the Task class is necessary for the functionality in graph_ontology.py.

  • The Task class is defined in cognee/modules/pipelines/tasks/Task.py.
  • The Task class is used within the ontology_task function in graph_ontology.py.
Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify the existence of the `Task` class in the specified path.

# Test: Search for the `Task` class definition in the specified path.
# Expect: The `Task` class should be defined in the specified path.
rg --type python -A 5 $'class Task' cognee/modules/pipelines/tasks/Task.py

Length of output: 106


Script:

#!/bin/bash
# Description: Verify the existence of the `Task` class in the specified path.

# Test: Search for the `Task` class definition in the specified path.
# Expect: The `Task` class should be defined in the specified path.
rg --type py -A 5 $'class Task' cognee/modules/pipelines/tasks/Task.py

Length of output: 253


Script:

#!/bin/bash
# Description: Review the remaining lines in `graph_ontology.py` to confirm the necessity of the `Task` class.

# Test: Display the content of `graph_ontology.py`.
# Expect: Review the usage of the `Task` class within the file.
cat cognee/api/v1/tasks/graph_ontology/graph_ontology.py

Length of output: 417

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 2

Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between 64f54a3 and 82ac9fc.

Files selected for processing (1)
  • cognee/tasks/graph_ontology/graph_ontology.py (1 hunks)
Additional comments not posted (3)
cognee/tasks/graph_ontology/graph_ontology.py (3)

10-12: Verify the conditional logic for KnowledgeGraph.

Ensure that the conditional check for KnowledgeGraph is correct and that this early return is the desired behavior.


18-18: Consider potential performance impact.

Returning the same data_chunks list after processing might have performance implications if the list is large. Consider if any optimizations are necessary.


21-22: Verify handling of edge cases.

Ensure that the function correctly handles edge cases, such as empty strings or strings with special characters.


graph_engine = await get_graph_engine()

await add_model_class_to_graph(topology_model, graph_engine)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add error handling for add_model_class_to_graph.

The asynchronous call to add_model_class_to_graph should include error handling to manage potential failures.

-  await add_model_class_to_graph(topology_model, graph_engine)
+  try:
+      await add_model_class_to_graph(topology_model, graph_engine)
+  except Exception as e:
+      # Handle the error appropriately, e.g., log it and return an empty list or raise a custom error
+      return []
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
await add_model_class_to_graph(topology_model, graph_engine)
try:
await add_model_class_to_graph(topology_model, graph_engine)
except Exception as e:
# Handle the error appropriately, e.g., log it and return an empty list or raise a custom error
return []

if topology_model == KnowledgeGraph:
return data_chunks

graph_engine = await get_graph_engine()
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add error handling for get_graph_engine.

The asynchronous call to get_graph_engine should include error handling to manage potential failures.

-  graph_engine = await get_graph_engine()
+  try:
+      graph_engine = await get_graph_engine()
+  except Exception as e:
+      # Handle the error appropriately, e.g., log it and return an empty list or raise a custom error
+      return []
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
graph_engine = await get_graph_engine()
try:
graph_engine = await get_graph_engine()
except Exception as e:
# Handle the error appropriately, e.g., log it and return an empty list or raise a custom error
return []

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 16

Outside diff range, codebase verification and nitpick comments (5)
cognee/tasks/chunk_remove_disconnected/chunk_remove_disconnected.py (1)

12-12: Optimize set comprehension.

The set comprehension can be simplified for readability.

-    document_ids = set((data_chunk.document_id for data_chunk in data_chunks))
+    document_ids = {data_chunk.document_id for data_chunk in data_chunks}
cognee/tasks/chunk_extract_summary/chunk_extract_summary.py (1)

15-17: Optimize asynchronous summary extraction.

The list comprehension can be simplified for readability.

-    chunk_summaries = await asyncio.gather(
-        *[extract_summary(chunk.text, summarization_model) for chunk in data_chunks]
-    )
+    chunk_summaries = await asyncio.gather(*(
+        extract_summary(chunk.text, summarization_model) for chunk in data_chunks
+    ))
cognee/tasks/source_documents_to_chunks/source_documents_to_chunks.py (1)

11-11: Optimize node existence check.

The node existence check can be optimized for readability.

-    if parent_node_id and await graph_engine.extract_node(parent_node_id) is None:
+    if parent_node_id and not await graph_engine.extract_node(parent_node_id):
cognee/modules/classification/classify_text_chunks.py (2)

Line range hint 39-43:
Add error handling for vector engine operations.

Consider adding try-except blocks to handle potential errors during retrieval and creation operations.

-    if await vector_engine.has_collection(collection_name):
-        existing_data_points = await vector_engine.retrieve(
-            collection_name,
-            list(set(classification_data_points)),
-        ) if len(classification_data_points) > 0 else []
-        existing_points_map = {point.id: True for point in existing_data_points}
-    else:
-        existing_points_map = {}
-        await vector_engine.create_collection(collection_name, payload_schema = Keyword)
+    try:
+        if await vector_engine.has_collection(collection_name):
+            existing_data_points = await vector_engine.retrieve(
+                collection_name,
+                list(set(classification_data_points)),
+            ) if len(classification_data_points) > 0 else []
+            existing_points_map = {point.id: True for point in existing_data_points}
+        else:
+            existing_points_map = {}
+            await vector_engine.create_collection(collection_name, payload_schema = Keyword)
+    except Exception as e:
+        # Log the error or handle it appropriately
+        print(f"Error during vector engine operations: {e}")

Line range hint 54-142:
Optimize node and edge creation with batch processing.

Consider batching node and edge creation to improve performance, especially for large datasets.

-    for (chunk_index, data_chunk) in enumerate(data_chunks):
-        chunk_classification = chunk_classifications[chunk_index]
-        classification_type_label = chunk_classification.label.type
-        classification_type_id = uuid5(NAMESPACE_OID, classification_type_label)
-        if classification_type_id not in existing_points_map:
-            data_points.append(
-                DataPoint[Keyword](
-                    id = str(classification_type_id),
-                    payload = Keyword.parse_obj({
-                        "uuid": str(classification_type_id),
-                        "text": classification_type_label,
-                        "chunk_id": str(data_chunk.chunk_id),
-                        "document_id": str(data_chunk.document_id),
-                    }),
-                    embed_field = "text",
-                )
-            )
-            nodes.append((
-                str(classification_type_id),
-                dict(
-                    id = str(classification_type_id),
-                    name = classification_type_label,
-                    type = classification_type_label,
-                )
-            ))
-            existing_points_map[classification_type_id] = True
-        edges.append((
-            str(data_chunk.chunk_id),
-            str(classification_type_id),
-            "is_media_type",
-            dict(
-                relationship_name = "is_media_type",
-                source_node_id = str(data_chunk.chunk_id),
-                target_node_id = str(classification_type_id),
-            ),
-        ))
-        for classification_subclass in chunk_classification.label.subclass:
-            classification_subtype_label = classification_subclass.value
-            classification_subtype_id = uuid5(NAMESPACE_OID, classification_subtype_label)
-            if classification_subtype_id not in existing_points_map:
-                data_points.append(
-                    DataPoint[Keyword](
-                        id = str(classification_subtype_id),
-                        payload = Keyword.parse_obj({
-                            "uuid": str(classification_subtype_id),
-                            "text": classification_subtype_label,
-                            "chunk_id": str(data_chunk.chunk_id),
-                            "document_id": str(data_chunk.document_id),
-                        }),
-                        embed_field = "text",
-                    )
-                )
-                nodes.append((
-                    str(classification_subtype_id),
-                    dict(
-                        id = str(classification_subtype_id),
-                        name = classification_subtype_label,
-                        type = classification_subtype_label,
-                    )
-                ))
-                edges.append((
-                    str(classification_subtype_id),
-                    str(classification_type_id),
-                    "is_subtype_of",
-                    dict(
-                        relationship_name = "contains",
-                        source_node_id = str(classification_type_id),
-                        target_node_id = str(classification_subtype_id),
-                    ),
-                ))
-                existing_points_map[classification_subtype_id] = True
-            edges.append((
-                str(data_chunk.chunk_id),
-                str(classification_subtype_id),
-                "is_classified_as",
-                dict(
-                    relationship_name = "is_classified_as",
-                    source_node_id = str(data_chunk.chunk_id),
-                    target_node_id = str(classification_subtype_id),
-                ),
-            ))
+    data_points.extend([
+        DataPoint[Keyword](
+            id = str(classification_type_id),
+            payload = Keyword.parse_obj({
+                "uuid": str(classification_type_id),
+                "text": classification_type_label,
+                "chunk_id": str(data_chunk.chunk_id),
+                "document_id": str(data_chunk.document_id),
+            }),
+            embed_field = "text",
+        ) for chunk_index, data_chunk in enumerate(data_chunks)
+        if (classification_type_id := uuid5(NAMESPACE_OID, chunk_classifications[chunk_index].label.type)) not in existing_points_map
+    ])
+    nodes.extend([
+        (
+            str(classification_type_id),
+            dict(
+                id = str(classification_type_id),
+                name = classification_type_label,
+                type = classification_type_label,
+            )
+        ) for chunk_index, data_chunk in enumerate(data_chunks)
+        if (classification_type_id := uuid5(NAMESPACE_OID, chunk_classifications[chunk_index].label.type)) not in existing_points_map
+    ])
+    edges.extend([
+        (
+            str(data_chunk.chunk_id),
+            str(classification_type_id),
+            "is_media_type",
+            dict(
+                relationship_name = "is_media_type",
+                source_node_id = str(data_chunk.chunk_id),
+                target_node_id = str(classification_type_id),
+            ),
+        ) for chunk_index, data_chunk in enumerate(data_chunks)
+    ])
+    edges.extend([
+        (
+            str(classification_subtype_id),
+            str(classification_type_id),
+            "is_subtype_of",
+            dict(
+                relationship_name = "contains",
+                source_node_id = str(classification_type_id),
+                target_node_id = str(classification_subtype_id),
+            ),
+        ) for chunk_index, data_chunk in enumerate(data_chunks)
+        for classification_subclass in chunk_classifications[chunk_index].label.subclass
+        if (classification_subtype_id := uuid5(NAMESPACE_OID, classification_subclass.value)) not in existing_points_map
+    ])
+    edges.extend([
+        (
+            str(data_chunk.chunk_id),
+            str(classification_subtype_id),
+            "is_classified_as",
+            dict(
+                relationship_name = "is_classified_as",
+                source_node_id = str(data_chunk.chunk_id),
+                target_node_id = str(classification_subtype_id),
+            ),
+        ) for chunk_index, data_chunk in enumerate(data_chunks)
+        for classification_subclass in chunk_classifications[chunk_index].label.subclass
+    ])
Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between 82ac9fc and 1087a7e.

Files selected for processing (11)
  • cognee/api/v1/cognify/cognify_v2.py (2 hunks)
  • cognee/modules/classification/classify_text_chunks.py (1 hunks)
  • cognee/modules/data/extraction/knowledge_graph/establish_graph_topology.py (1 hunks)
  • cognee/tasks/chunk_extract_summary/chunk_extract_summary.py (1 hunks)
  • cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py (1 hunks)
  • cognee/tasks/chunk_remove_disconnected/chunk_remove_disconnected.py (1 hunks)
  • cognee/tasks/chunk_to_graph_decomposition/chunk_to_graph_decomposition.py (1 hunks)
  • cognee/tasks/chunk_to_vector_graphstore/chunk_to_vector_graphstore.py (1 hunks)
  • cognee/tasks/chunk_update_check/chunk_update_check.py (1 hunks)
  • cognee/tasks/graph_decomposition_to_graph_nodes/graph_decomposition_to_graph_nodes.py (1 hunks)
  • cognee/tasks/source_documents_to_chunks/source_documents_to_chunks.py (1 hunks)
Additional comments not posted (12)
cognee/modules/data/extraction/knowledge_graph/establish_graph_topology.py (2)

Line range hint 21-22:
LGTM!

The function generate_node_id is simple and performs the expected normalization of node IDs.


8-8: Verify the function usage in the codebase.

Ensure that all function calls to chunk_to_graph_decomposition match the new name.

cognee/tasks/chunk_to_graph_decomposition/chunk_to_graph_decomposition.py (2)

21-22: LGTM!

The function generate_node_id is simple and performs the expected normalization of node IDs.


10-10: Verify the function usage in the codebase.

Ensure that all function calls to chunk_to_graph_decomposition_task match the new name.

Verification successful

Function usage verified successfully.

The function chunk_to_graph_decomposition_task is correctly referenced in the codebase.

  • cognee/api/v1/cognify/cognify_v2.py
Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify all function calls to `chunk_to_graph_decomposition_task` match the new name.

# Test: Search for the function usage. Expect: Only occurrences of the new name.
rg --type python -A 5 $'chunk_to_graph_decomposition_task'

Length of output: 88


Script:

#!/bin/bash
# Description: Verify all function calls to `chunk_to_graph_decomposition_task` match the new name.

# Test: Search for the function usage. Expect: Only occurrences of the new name.
rg -A 5 $'chunk_to_graph_decomposition_task'

Length of output: 2360

cognee/tasks/chunk_to_vector_graphstore/chunk_to_vector_graphstore.py (3)

28-37: LGTM! Ensure proper testing for data point creation.

The code for creating data points in vector storage looks good. Ensure that this part is well-tested.


82-83: LGTM! Ensure proper testing for node and edge addition.

The code for adding nodes and edges to graph storage looks good. Ensure that this part is well-tested.


89-91: LGTM! Ensure proper testing for edge cases.

The logic for handling the first chunk is correct. Ensure that edge cases are covered in tests.

cognee/modules/classification/classify_text_chunks.py (1)

Line range hint 144-150:
LGTM! Ensure proper testing for node and edge addition.

The code for adding nodes and edges to graph storage looks good. Ensure that this part is well-tested.

cognee/api/v1/cognify/cognify_v2.py (2)

30-38: LGTM! New task function imports are correct.

The new task functions are imported correctly and seem necessary for the updated pipeline functionality.


112-131: LGTM! But verify the function usage in the codebase.

The new task functions are integrated correctly into the run_cognify_pipeline function.

However, ensure that all function calls to run_cognify_pipeline are updated if needed.

Verification successful

All function calls to run_cognify_pipeline are updated and consistent within the codebase.

  • The function run_cognify_pipeline is only referenced within cognee/api/v1/cognify/cognify_v2.py.
Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify all function calls to `run_cognify_pipeline` are updated if needed.

# Test: Search for the function usage. Expect: Only occurrences of the new signature.
rg --type python -A 5 $'run_cognify_pipeline'

Length of output: 75


Script:

#!/bin/bash
# Description: Verify all function calls to `run_cognify_pipeline` are updated if needed.

# Find all Python files and search for the function usage within those files
fd -e py | xargs rg 'run_cognify_pipeline'

Length of output: 229


Script:

#!/bin/bash
# Description: Verify all function calls to `run_cognify_pipeline` are updated if needed.

# Search for the function usage in the entire codebase
rg 'run_cognify_pipeline'

Length of output: 212

cognee/tasks/graph_decomposition_to_graph_nodes/graph_decomposition_to_graph_nodes.py (2)

13-19: LGTM! The EntityNode class is defined correctly.

The class follows best practices for defining data models using Pydantic.


215-219: LGTM! The helper functions are defined correctly.

The generate_name and generate_node_id functions follow best practices for string manipulations.

Comment on lines 16 to 24
for document_id in document_ids:
chunk_ids = await graph_engine.get_successor_ids(document_id, edge_label = "has_chunk")

for chunk_id in chunk_ids:
previous_chunks = await graph_engine.get_predecessor_ids(chunk_id, edge_label = "next_chunk")

if len(previous_chunks) == 0:
obsolete_chunk_ids.append(chunk_id)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Consider breaking down nested loops for readability.

Nested loops can be hard to read and maintain. Consider breaking them down into smaller functions.

async def get_obsolete_chunk_ids(graph_engine, document_ids):
    obsolete_chunk_ids = []
    for document_id in document_ids:
        chunk_ids = await graph_engine.get_successor_ids(document_id, edge_label="has_chunk")
        for chunk_id in chunk_ids:
            previous_chunks = await graph_engine.get_predecessor_ids(chunk_id, edge_label="next_chunk")
            if len(previous_chunks) == 0:
                obsolete_chunk_ids.append(chunk_id)
    return obsolete_chunk_ids

async def chunk_remove_disconnected_task(data_chunks: list[DocumentChunk]) -> list[DocumentChunk]:
    graph_engine = await get_graph_engine()
    document_ids = {data_chunk.document_id for data_chunk in data_chunks}
    obsolete_chunk_ids = await get_obsolete_chunk_ids(graph_engine, document_ids)
    if obsolete_chunk_ids:
        await graph_engine.delete_nodes(obsolete_chunk_ids)
    disconnected_nodes = await graph_engine.get_disconnected_nodes()
    if disconnected_nodes:
        await graph_engine.delete_nodes(disconnected_nodes)
    return data_chunks

Comment on lines 28 to 30
disconnected_nodes = await graph_engine.get_disconnected_nodes()
if len(disconnected_nodes) > 0:
await graph_engine.delete_nodes(disconnected_nodes)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Optimize the deletion of disconnected nodes.

The deletion of disconnected nodes can be optimized by combining the checks and deletions.

-    disconnected_nodes = await graph_engine.get_disconnected_nodes()
-    if len(disconnected_nodes) > 0:
-        await graph_engine.delete_nodes(disconnected_nodes)
+    disconnected_nodes = await graph_engine.get_disconnected_nodes()
+    if disconnected_nodes:
+        await graph_engine.delete_nodes(disconnected_nodes)
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
disconnected_nodes = await graph_engine.get_disconnected_nodes()
if len(disconnected_nodes) > 0:
await graph_engine.delete_nodes(disconnected_nodes)
disconnected_nodes = await graph_engine.get_disconnected_nodes()
if disconnected_nodes:
await graph_engine.delete_nodes(disconnected_nodes)

Comment on lines 9 to 32
async def chunk_remove_disconnected_task(data_chunks: list[DocumentChunk]) -> list[DocumentChunk]:
graph_engine = await get_graph_engine()

document_ids = set((data_chunk.document_id for data_chunk in data_chunks))

obsolete_chunk_ids = []

for document_id in document_ids:
chunk_ids = await graph_engine.get_successor_ids(document_id, edge_label = "has_chunk")

for chunk_id in chunk_ids:
previous_chunks = await graph_engine.get_predecessor_ids(chunk_id, edge_label = "next_chunk")

if len(previous_chunks) == 0:
obsolete_chunk_ids.append(chunk_id)

if len(obsolete_chunk_ids) > 0:
await graph_engine.delete_nodes(obsolete_chunk_ids)

disconnected_nodes = await graph_engine.get_disconnected_nodes()
if len(disconnected_nodes) > 0:
await graph_engine.delete_nodes(disconnected_nodes)

return data_chunks
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ensure proper error handling for external calls.

The function makes several asynchronous calls to graph_engine. It's important to handle potential errors that might arise from these calls.

+    try:
+        graph_engine = await get_graph_engine()
+    except Exception as e:
+        # Handle the exception or log it
+        raise e

Add similar error handling for other asynchronous calls within the function.

Committable suggestion was skipped due to low confidence.


vector_engine = get_vector_engine()

await vector_engine.create_collection(collection_name, payload_schema = TextSummary)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ensure collection creation only if it does not exist.

Check if the collection already exists before attempting to create it.

+    if not await vector_engine.collection_exists(collection_name):
+        await vector_engine.create_collection(collection_name, payload_schema=TextSummary)
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
await vector_engine.create_collection(collection_name, payload_schema = TextSummary)
if not await vector_engine.collection_exists(collection_name):
await vector_engine.create_collection(collection_name, payload_schema = TextSummary)

Comment on lines 11 to 13
async def chunk_extract_summary_task(data_chunks: list[DocumentChunk], summarization_model: Type[BaseModel], collection_name: str = "summaries"):
if len(data_chunks) == 0:
return data_chunks
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ensure proper error handling for external calls.

The function makes several asynchronous calls. It's important to handle potential errors that might arise from these calls.

+    try:
+        if len(data_chunks) == 0:
+            return data_chunks
+    except Exception as e:
+        # Handle the exception or log it
+        raise e

Add similar error handling for other asynchronous calls within the function.

Committable suggestion was skipped due to low confidence.

Comment on lines 88 to 97
def get_previous_chunk_id(document_chunks: list[DocumentChunk], current_chunk: DocumentChunk) -> DocumentChunk:
if current_chunk.chunk_index == 0:
return current_chunk.document_id

for chunk in document_chunks:
if str(chunk.document_id) == str(current_chunk.document_id) \
and chunk.chunk_index == current_chunk.chunk_index - 1:
return chunk.chunk_id

return None
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Optimize loop for retrieving previous chunk ID.

Consider using a dictionary to map chunk indices to improve performance.

-    for chunk in document_chunks:
-        if str(chunk.document_id) == str(current_chunk.document_id) \
-            and chunk.chunk_index == current_chunk.chunk_index - 1:
-            return chunk.chunk_id
+    chunk_map = {chunk.chunk_index: chunk.chunk_id for chunk in document_chunks if str(chunk.document_id) == str(current_chunk.document_id)}
+    return chunk_map.get(current_chunk.chunk_index - 1, None)
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def get_previous_chunk_id(document_chunks: list[DocumentChunk], current_chunk: DocumentChunk) -> DocumentChunk:
if current_chunk.chunk_index == 0:
return current_chunk.document_id
for chunk in document_chunks:
if str(chunk.document_id) == str(current_chunk.document_id) \
and chunk.chunk_index == current_chunk.chunk_index - 1:
return chunk.chunk_id
return None
def get_previous_chunk_id(document_chunks: list[DocumentChunk], current_chunk: DocumentChunk) -> DocumentChunk:
if current_chunk.chunk_index == 0:
return current_chunk.document_id
chunk_map = {chunk.chunk_index: chunk.chunk_id for chunk in document_chunks if str(chunk.document_id) == str(current_chunk.document_id)}
return chunk_map.get(current_chunk.chunk_index - 1, None)

Comment on lines 20 to 23
await vector_engine.delete_data_points(collection_name, [str(chunk.chunk_id) for chunk in existing_chunks])

await graph_engine.remove_connection_to_successors_of([chunk.chunk_id for chunk in existing_chunks], "next_chunk")
await graph_engine.remove_connection_to_predecessors_of([chunk.chunk_id for chunk in existing_chunks], "has_chunk")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add error handling for vector and graph engine operations.

Consider adding try-except blocks to handle potential errors during deletion and removal operations.

-            await vector_engine.delete_data_points(collection_name, [str(chunk.chunk_id) for chunk in existing_chunks])
-            await graph_engine.remove_connection_to_successors_of([chunk.chunk_id for chunk in existing_chunks], "next_chunk")
-            await graph_engine.remove_connection_to_predecessors_of([chunk.chunk_id for chunk in existing_chunks], "has_chunk")
+            try:
+                await vector_engine.delete_data_points(collection_name, [str(chunk.chunk_id) for chunk in existing_chunks])
+                await graph_engine.remove_connection_to_successors_of([chunk.chunk_id for chunk in existing_chunks], "next_chunk")
+                await graph_engine.remove_connection_to_predecessors_of([chunk.chunk_id for chunk in existing_chunks], "has_chunk")
+            except Exception as e:
+                # Log the error or handle it appropriately
+                print(f"Error during deletion or removal: {e}")
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
await vector_engine.delete_data_points(collection_name, [str(chunk.chunk_id) for chunk in existing_chunks])
await graph_engine.remove_connection_to_successors_of([chunk.chunk_id for chunk in existing_chunks], "next_chunk")
await graph_engine.remove_connection_to_predecessors_of([chunk.chunk_id for chunk in existing_chunks], "has_chunk")
try:
await vector_engine.delete_data_points(collection_name, [str(chunk.chunk_id) for chunk in existing_chunks])
await graph_engine.remove_connection_to_successors_of([chunk.chunk_id for chunk in existing_chunks], "next_chunk")
await graph_engine.remove_connection_to_predecessors_of([chunk.chunk_id for chunk in existing_chunks], "has_chunk")
except Exception as e:
# Log the error or handle it appropriately
print(f"Error during deletion or removal: {e}")

Comment on lines 43 to 80
for chunk in data_chunks:
chunk_nodes.append((
str(chunk.chunk_id),
dict(
id = str(chunk.chunk_id),
chunk_id = str(chunk.chunk_id),
document_id = str(chunk.document_id),
word_count = chunk.word_count,
chunk_index = chunk.chunk_index,
cut_type = chunk.cut_type,
pages = chunk.pages,
)
))

chunk_edges.append((
str(chunk.document_id),
str(chunk.chunk_id),
"has_chunk",
dict(
relationship_name = "has_chunk",
source_node_id = str(chunk.document_id),
target_node_id = str(chunk.chunk_id),
),
))

previous_chunk_id = get_previous_chunk_id(data_chunks, chunk)

if previous_chunk_id is not None:
chunk_edges.append((
str(previous_chunk_id),
str(chunk.chunk_id),
"next_chunk",
dict(
relationship_name = "next_chunk",
source_node_id = str(previous_chunk_id),
target_node_id = str(chunk.chunk_id),
),
))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Optimize node and edge creation with batch processing.

Consider batching node and edge creation to improve performance, especially for large datasets.

-    for chunk in data_chunks:
-        chunk_nodes.append((
-            str(chunk.chunk_id),
-            dict(
-                id = str(chunk.chunk_id),
-                chunk_id = str(chunk.chunk_id),
-                document_id = str(chunk.document_id),
-                word_count = chunk.word_count,
-                chunk_index = chunk.chunk_index,
-                cut_type = chunk.cut_type,
-                pages = chunk.pages,
-            )
-        ))
-        chunk_edges.append((
-            str(chunk.document_id),
-            str(chunk.chunk_id),
-            "has_chunk",
-            dict(
-                relationship_name = "has_chunk",
-                source_node_id = str(chunk.document_id),
-                target_node_id = str(chunk.chunk_id),
-            ),
-        ))
-        previous_chunk_id = get_previous_chunk_id(data_chunks, chunk)
-        if previous_chunk_id is not None:
-            chunk_edges.append((
-                str(previous_chunk_id),
-                str(chunk.chunk_id),
-                "next_chunk",
-                dict(
-                    relationship_name = "next_chunk",
-                    source_node_id = str(previous_chunk_id),
-                    target_node_id = str(chunk.chunk_id),
-                ),
-            ))
+    chunk_nodes.extend([
+        (
+            str(chunk.chunk_id),
+            dict(
+                id = str(chunk.chunk_id),
+                chunk_id = str(chunk.chunk_id),
+                document_id = str(chunk.document_id),
+                word_count = chunk.word_count,
+                chunk_index = chunk.chunk_index,
+                cut_type = chunk.cut_type,
+                pages = chunk.pages,
+            )
+        ) for chunk in data_chunks
+    ])
+    chunk_edges.extend([
+        (
+            str(chunk.document_id),
+            str(chunk.chunk_id),
+            "has_chunk",
+            dict(
+                relationship_name = "has_chunk",
+                source_node_id = str(chunk.document_id),
+                target_node_id = str(chunk.chunk_id),
+            ),
+        ) for chunk in data_chunks
+    ])
+    chunk_edges.extend([
+        (
+            str(previous_chunk_id),
+            str(chunk.chunk_id),
+            "next_chunk",
+            dict(
+                relationship_name = "next_chunk",
+                source_node_id = str(previous_chunk_id),
+                target_node_id = str(chunk.chunk_id),
+            ),
+        ) for chunk in data_chunks if (previous_chunk_id := get_previous_chunk_id(data_chunks, chunk)) is not None
+    ])
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
for chunk in data_chunks:
chunk_nodes.append((
str(chunk.chunk_id),
dict(
id = str(chunk.chunk_id),
chunk_id = str(chunk.chunk_id),
document_id = str(chunk.document_id),
word_count = chunk.word_count,
chunk_index = chunk.chunk_index,
cut_type = chunk.cut_type,
pages = chunk.pages,
)
))
chunk_edges.append((
str(chunk.document_id),
str(chunk.chunk_id),
"has_chunk",
dict(
relationship_name = "has_chunk",
source_node_id = str(chunk.document_id),
target_node_id = str(chunk.chunk_id),
),
))
previous_chunk_id = get_previous_chunk_id(data_chunks, chunk)
if previous_chunk_id is not None:
chunk_edges.append((
str(previous_chunk_id),
str(chunk.chunk_id),
"next_chunk",
dict(
relationship_name = "next_chunk",
source_node_id = str(previous_chunk_id),
target_node_id = str(chunk.chunk_id),
),
))
chunk_nodes.extend([
(
str(chunk.chunk_id),
dict(
id = str(chunk.chunk_id),
chunk_id = str(chunk.chunk_id),
document_id = str(chunk.document_id),
word_count = chunk.word_count,
chunk_index = chunk.chunk_index,
cut_type = chunk.cut_type,
pages = chunk.pages,
)
) for chunk in data_chunks
])
chunk_edges.extend([
(
str(chunk.document_id),
str(chunk.chunk_id),
"has_chunk",
dict(
relationship_name = "has_chunk",
source_node_id = str(chunk.document_id),
target_node_id = str(chunk.chunk_id),
),
) for chunk in data_chunks
])
chunk_edges.extend([
(
str(previous_chunk_id),
str(chunk.chunk_id),
"next_chunk",
dict(
relationship_name = "next_chunk",
source_node_id = str(previous_chunk_id),
target_node_id = str(chunk.chunk_id),
),
) for chunk in data_chunks if (previous_chunk_id := get_previous_chunk_id(data_chunks, chunk)) is not None
])

Comment on lines +11 to 13
async def chunk_naive_llm_classifier(data_chunks: list[DocumentChunk], classification_model: Type[BaseModel]):
if len(data_chunks) == 0:
return data_chunks
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Add error handling for empty data chunks.

Consider logging a warning or raising an exception if data_chunks is empty to ensure proper handling.

-    if len(data_chunks) == 0:
-        return data_chunks
+    if len(data_chunks) == 0:
+        raise ValueError("data_chunks list is empty")
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
async def chunk_naive_llm_classifier(data_chunks: list[DocumentChunk], classification_model: Type[BaseModel]):
if len(data_chunks) == 0:
return data_chunks
async def chunk_naive_llm_classifier(data_chunks: list[DocumentChunk], classification_model: Type[BaseModel]):
if len(data_chunks) == 0:
raise ValueError("data_chunks list is empty")

Comment on lines 21 to 213

edge_key = str(chunk.chunk_id) + node_id + "contains_entity"

if edge_key not in existing_edges_map:
graph_edges.append((
str(chunk.chunk_id),
node_id,
"contains_entity",
dict(
relationship_name = "contains_entity",
source_node_id = str(chunk.chunk_id),
target_node_id = node_id,
),
))

# Add relationship between entity type and entity itself: "Jake is Person"
graph_edges.append((
node_id,
type_node_id,
"is_entity_type",
dict(
relationship_name = "is_entity_type",
source_node_id = type_node_id,
target_node_id = node_id,
),
))

existing_edges_map[edge_key] = True

if type_node_id not in existing_nodes_map:
type_node_data = dict(
uuid = type_node_id,
name = type_node_name,
type = type_node_id,
description = type_node_name,
created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
)

graph_nodes.append((type_node_id, dict(
**type_node_data,
properties = json.dumps(node.properties)
)))

data_points.append(DataPoint[EntityNode](
id = str(uuid5(NAMESPACE_OID, type_node_id)),
payload = type_node_data,
embed_field = "name",
))

existing_nodes_map[type_node_id] = True

edge_key = str(chunk.chunk_id) + type_node_id + "contains_entity_type"

if edge_key not in existing_edges_map:
graph_edges.append((
str(chunk.chunk_id),
type_node_id,
"contains_entity_type",
dict(
relationship_name = "contains_entity_type",
source_node_id = str(chunk.chunk_id),
target_node_id = type_node_id,
),
))

existing_edges_map[edge_key] = True

# Add relationship that came from graphs.
for edge in graph.edges:
source_node_id = generate_node_id(edge.source_node_id)
target_node_id = generate_node_id(edge.target_node_id)
relationship_name = generate_name(edge.relationship_name)
edge_key = source_node_id + target_node_id + relationship_name

if edge_key not in existing_edges_map:
graph_edges.append((
generate_node_id(edge.source_node_id),
generate_node_id(edge.target_node_id),
edge.relationship_name,
dict(
relationship_name = generate_name(edge.relationship_name),
source_node_id = generate_node_id(edge.source_node_id),
target_node_id = generate_node_id(edge.target_node_id),
properties = json.dumps(edge.properties),
),
))
existing_edges_map[edge_key] = True

if len(data_points) > 0:
await vector_engine.create_data_points(collection_name, data_points)

if len(graph_nodes) > 0:
await graph_engine.add_nodes(graph_nodes)

if len(graph_edges) > 0:
await graph_engine.add_edges(graph_edges)

return data_chunks

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Review the function logic and suggest improvements.

The graph_decomposition_to_graph_nodes_task function is well-structured and follows best practices. However, there are some areas for potential optimization and improvement.

  1. Optimize asyncio.gather usage: The asyncio.gather function call can be optimized by checking for empty input.
  2. Improve error handling: Add error handling to manage potential exceptions during graph and vector engine operations.
  3. Refactor nested loops: The nested loops can be refactored for better readability and performance.
async def graph_decomposition_to_graph_nodes_task(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel], collection_name: str):
    if not data_chunks:
        return []

    chunk_graphs = await asyncio.gather(
        *[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks]
    )

    vector_engine = get_vector_engine()
    graph_engine = await get_graph_engine()

    has_collection = await vector_engine.has_collection(collection_name)

    if not has_collection:
        await vector_engine.create_collection(collection_name, payload_schema = EntityNode)

    processed_nodes = {}
    type_node_edges = []
    entity_node_edges = []
    type_entity_edges = []

    for chunk_index, chunk in enumerate(data_chunks):
        chunk_graph = chunk_graphs[chunk_index]
        for node in chunk_graph.nodes:
            type_node_id = generate_node_id(node.type)
            entity_node_id = generate_node_id(node.id)

            if type_node_id not in processed_nodes:
                type_node_edges.append((str(chunk.chunk_id), type_node_id, "contains_entity_type"))
                processed_nodes[type_node_id] = True

            if entity_node_id not in processed_nodes:
                entity_node_edges.append((str(chunk.chunk_id), entity_node_id, "contains_entity"))
                type_entity_edges.append((entity_node_id, type_node_id, "is_entity_type"))
                processed_nodes[entity_node_id] = True

        graph_node_edges = [
            (edge.source_node_id, edge.target_node_id, edge.relationship_name) \
            for edge in chunk_graph.edges
        ]

    existing_edges = await graph_engine.has_edges([
        *type_node_edges,
        *entity_node_edges,
        *type_entity_edges,
        *graph_node_edges,
    ])

    existing_edges_map = {}
    existing_nodes_map = {}

    for edge in existing_edges:
        existing_edges_map[edge[0] + edge[1] + edge[2]] = True
        existing_nodes_map[edge[0]] = True

    graph_nodes = []
    graph_edges = []
    data_points = []

    for chunk_index, chunk in enumerate(data_chunks):
        graph = chunk_graphs[chunk_index]
        if graph is None:
            continue

        for node in graph.nodes:
            node_id = generate_node_id(node.id)
            node_name = generate_name(node.name)

            type_node_id = generate_node_id(node.type)
            type_node_name = generate_name(node.type)

            if node_id not in existing_nodes_map:
                node_data = dict(
                    uuid = node_id,
                    name = node_name,
                    type = node_name,
                    description = node.description,
                    created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
                    updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
                )

                graph_nodes.append((
                    node_id,
                    dict(
                        **node_data,
                        properties = json.dumps(node.properties),
                    )
                ))

                data_points.append(DataPoint[EntityNode](
                    id = str(uuid5(NAMESPACE_OID, node_id)),
                    payload = node_data,
                    embed_field = "name",
                ))

                existing_nodes_map[node_id] = True

            edge_key = str(chunk.chunk_id) + node_id + "contains_entity"

            if edge_key not in existing_edges_map:
                graph_edges.append((
                    str(chunk.chunk_id),
                    node_id,
                    "contains_entity",
                    dict(
                        relationship_name = "contains_entity",
                        source_node_id = str(chunk.chunk_id),
                        target_node_id = node_id,
                    ),
                ))

                # Add relationship between entity type and entity itself: "Jake is Person"
                graph_edges.append((
                    node_id,
                    type_node_id,
                    "is_entity_type",
                    dict(
                        relationship_name = "is_entity_type",
                        source_node_id = type_node_id,
                        target_node_id = node_id,
                    ),
                ))

                existing_edges_map[edge_key] = True

            if type_node_id not in existing_nodes_map:
                type_node_data = dict(
                    uuid = type_node_id,
                    name = type_node_name,
                    type = type_node_id,
                    description = type_node_name,
                    created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
                    updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
                )

                graph_nodes.append((type_node_id, dict(
                    **type_node_data,
                    properties = json.dumps(node.properties)
                )))

                data_points.append(DataPoint[EntityNode](
                    id = str(uuid5(NAMESPACE_OID, type_node_id)),
                    payload = type_node_data,
                    embed_field = "name",
                ))

                existing_nodes_map[type_node_id] = True

            edge_key = str(chunk.chunk_id) + type_node_id + "contains_entity_type"

            if edge_key not in existing_edges_map:
                graph_edges.append((
                    str(chunk.chunk_id),
                    type_node_id,
                    "contains_entity_type",
                    dict(
                        relationship_name = "contains_entity_type",
                        source_node_id = str(chunk.chunk_id),
                        target_node_id = type_node_id,
                    ),
                ))

                existing_edges_map[edge_key] = True

            # Add relationship that came from graphs.
            for edge in graph.edges:
                source_node_id = generate_node_id(edge.source_node_id)
                target_node_id = generate_node_id(edge.target_node_id)
                relationship_name = generate_name(edge.relationship_name)
                edge_key = source_node_id + target_node_id + relationship_name

                if edge_key not in existing_edges_map:
                    graph_edges.append((
                        generate_node_id(edge.source_node_id),
                        generate_node_id(edge.target_node_id),
                        edge.relationship_name,
                        dict(
                            relationship_name = generate_name(edge.relationship_name),
                            source_node_id = generate_node_id(edge.source_node_id),
                            target_node_id = generate_node_id(edge.target_node_id),
                            properties = json.dumps(edge.properties),
                        ),
                    ))
                    existing_edges_map[edge_key] = True

    if len(data_points) > 0:
        await vector_engine.create_data_points(collection_name, data_points)

    if len(graph_nodes) > 0:
        await graph_engine.add_nodes(graph_nodes)

    if len(graph_edges) > 0:
        await graph_engine.add_edges(graph_edges)

    return data_chunks
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
async def graph_decomposition_to_graph_nodes_task(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel], collection_name: str):
chunk_graphs = await asyncio.gather(
*[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks]
)
vector_engine = get_vector_engine()
graph_engine = await get_graph_engine()
has_collection = await vector_engine.has_collection(collection_name)
if not has_collection:
await vector_engine.create_collection(collection_name, payload_schema = EntityNode)
processed_nodes = {}
type_node_edges = []
entity_node_edges = []
type_entity_edges = []
for (chunk_index, chunk) in enumerate(data_chunks):
chunk_graph = chunk_graphs[chunk_index]
for node in chunk_graph.nodes:
type_node_id = generate_node_id(node.type)
entity_node_id = generate_node_id(node.id)
if type_node_id not in processed_nodes:
type_node_edges.append((str(chunk.chunk_id), type_node_id, "contains_entity_type"))
processed_nodes[type_node_id] = True
if entity_node_id not in processed_nodes:
entity_node_edges.append((str(chunk.chunk_id), entity_node_id, "contains_entity"))
type_entity_edges.append((entity_node_id, type_node_id, "is_entity_type"))
processed_nodes[entity_node_id] = True
graph_node_edges = [
(edge.source_node_id, edge.target_node_id, edge.relationship_name) \
for edge in chunk_graph.edges
]
existing_edges = await graph_engine.has_edges([
*type_node_edges,
*entity_node_edges,
*type_entity_edges,
*graph_node_edges,
])
existing_edges_map = {}
existing_nodes_map = {}
for edge in existing_edges:
existing_edges_map[edge[0] + edge[1] + edge[2]] = True
existing_nodes_map[edge[0]] = True
graph_nodes = []
graph_edges = []
data_points = []
for (chunk_index, chunk) in enumerate(data_chunks):
graph = chunk_graphs[chunk_index]
if graph is None:
continue
for node in graph.nodes:
node_id = generate_node_id(node.id)
node_name = generate_name(node.name)
type_node_id = generate_node_id(node.type)
type_node_name = generate_name(node.type)
if node_id not in existing_nodes_map:
node_data = dict(
uuid = node_id,
name = node_name,
type = node_name,
description = node.description,
created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
)
graph_nodes.append((
node_id,
dict(
**node_data,
properties = json.dumps(node.properties),
)
))
data_points.append(DataPoint[EntityNode](
id = str(uuid5(NAMESPACE_OID, node_id)),
payload = node_data,
embed_field = "name",
))
existing_nodes_map[node_id] = True
edge_key = str(chunk.chunk_id) + node_id + "contains_entity"
if edge_key not in existing_edges_map:
graph_edges.append((
str(chunk.chunk_id),
node_id,
"contains_entity",
dict(
relationship_name = "contains_entity",
source_node_id = str(chunk.chunk_id),
target_node_id = node_id,
),
))
# Add relationship between entity type and entity itself: "Jake is Person"
graph_edges.append((
node_id,
type_node_id,
"is_entity_type",
dict(
relationship_name = "is_entity_type",
source_node_id = type_node_id,
target_node_id = node_id,
),
))
existing_edges_map[edge_key] = True
if type_node_id not in existing_nodes_map:
type_node_data = dict(
uuid = type_node_id,
name = type_node_name,
type = type_node_id,
description = type_node_name,
created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
)
graph_nodes.append((type_node_id, dict(
**type_node_data,
properties = json.dumps(node.properties)
)))
data_points.append(DataPoint[EntityNode](
id = str(uuid5(NAMESPACE_OID, type_node_id)),
payload = type_node_data,
embed_field = "name",
))
existing_nodes_map[type_node_id] = True
edge_key = str(chunk.chunk_id) + type_node_id + "contains_entity_type"
if edge_key not in existing_edges_map:
graph_edges.append((
str(chunk.chunk_id),
type_node_id,
"contains_entity_type",
dict(
relationship_name = "contains_entity_type",
source_node_id = str(chunk.chunk_id),
target_node_id = type_node_id,
),
))
existing_edges_map[edge_key] = True
# Add relationship that came from graphs.
for edge in graph.edges:
source_node_id = generate_node_id(edge.source_node_id)
target_node_id = generate_node_id(edge.target_node_id)
relationship_name = generate_name(edge.relationship_name)
edge_key = source_node_id + target_node_id + relationship_name
if edge_key not in existing_edges_map:
graph_edges.append((
generate_node_id(edge.source_node_id),
generate_node_id(edge.target_node_id),
edge.relationship_name,
dict(
relationship_name = generate_name(edge.relationship_name),
source_node_id = generate_node_id(edge.source_node_id),
target_node_id = generate_node_id(edge.target_node_id),
properties = json.dumps(edge.properties),
),
))
existing_edges_map[edge_key] = True
if len(data_points) > 0:
await vector_engine.create_data_points(collection_name, data_points)
if len(graph_nodes) > 0:
await graph_engine.add_nodes(graph_nodes)
if len(graph_edges) > 0:
await graph_engine.add_edges(graph_edges)
return data_chunks
async def graph_decomposition_to_graph_nodes_task(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel], collection_name: str):
if not data_chunks:
return []
chunk_graphs = await asyncio.gather(
*[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks]
)
vector_engine = get_vector_engine()
graph_engine = await get_graph_engine()
has_collection = await vector_engine.has_collection(collection_name)
if not has_collection:
await vector_engine.create_collection(collection_name, payload_schema = EntityNode)
processed_nodes = {}
type_node_edges = []
entity_node_edges = []
type_entity_edges = []
for chunk_index, chunk in enumerate(data_chunks):
chunk_graph = chunk_graphs[chunk_index]
for node in chunk_graph.nodes:
type_node_id = generate_node_id(node.type)
entity_node_id = generate_node_id(node.id)
if type_node_id not in processed_nodes:
type_node_edges.append((str(chunk.chunk_id), type_node_id, "contains_entity_type"))
processed_nodes[type_node_id] = True
if entity_node_id not in processed_nodes:
entity_node_edges.append((str(chunk.chunk_id), entity_node_id, "contains_entity"))
type_entity_edges.append((entity_node_id, type_node_id, "is_entity_type"))
processed_nodes[entity_node_id] = True
graph_node_edges = [
(edge.source_node_id, edge.target_node_id, edge.relationship_name) \
for edge in chunk_graph.edges
]
existing_edges = await graph_engine.has_edges([
*type_node_edges,
*entity_node_edges,
*type_entity_edges,
*graph_node_edges,
])
existing_edges_map = {}
existing_nodes_map = {}
for edge in existing_edges:
existing_edges_map[edge[0] + edge[1] + edge[2]] = True
existing_nodes_map[edge[0]] = True
graph_nodes = []
graph_edges = []
data_points = []
for chunk_index, chunk in enumerate(data_chunks):
graph = chunk_graphs[chunk_index]
if graph is None:
continue
for node in graph.nodes:
node_id = generate_node_id(node.id)
node_name = generate_name(node.name)
type_node_id = generate_node_id(node.type)
type_node_name = generate_name(node.type)
if node_id not in existing_nodes_map:
node_data = dict(
uuid = node_id,
name = node_name,
type = node_name,
description = node.description,
created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
)
graph_nodes.append((
node_id,
dict(
**node_data,
properties = json.dumps(node.properties),
)
))
data_points.append(DataPoint[EntityNode](
id = str(uuid5(NAMESPACE_OID, node_id)),
payload = node_data,
embed_field = "name",
))
existing_nodes_map[node_id] = True
edge_key = str(chunk.chunk_id) + node_id + "contains_entity"
if edge_key not in existing_edges_map:
graph_edges.append((
str(chunk.chunk_id),
node_id,
"contains_entity",
dict(
relationship_name = "contains_entity",
source_node_id = str(chunk.chunk_id),
target_node_id = node_id,
),
))
# Add relationship between entity type and entity itself: "Jake is Person"
graph_edges.append((
node_id,
type_node_id,
"is_entity_type",
dict(
relationship_name = "is_entity_type",
source_node_id = type_node_id,
target_node_id = node_id,
),
))
existing_edges_map[edge_key] = True
if type_node_id not in existing_nodes_map:
type_node_data = dict(
uuid = type_node_id,
name = type_node_name,
type = type_node_id,
description = type_node_name,
created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S"),
)
graph_nodes.append((type_node_id, dict(
**type_node_data,
properties = json.dumps(node.properties)
)))
data_points.append(DataPoint[EntityNode](
id = str(uuid5(NAMESPACE_OID, type_node_id)),
payload = type_node_data,
embed_field = "name",
))
existing_nodes_map[type_node_id] = True
edge_key = str(chunk.chunk_id) + type_node_id + "contains_entity_type"
if edge_key not in existing_edges_map:
graph_edges.append((
str(chunk.chunk_id),
type_node_id,
"contains_entity_type",
dict(
relationship_name = "contains_entity_type",
source_node_id = str(chunk.chunk_id),
target_node_id = type_node_id,
),
))
existing_edges_map[edge_key] = True
# Add relationship that came from graphs.
for edge in graph.edges:
source_node_id = generate_node_id(edge.source_node_id)
target_node_id = generate_node_id(edge.target_node_id)
relationship_name = generate_name(edge.relationship_name)
edge_key = source_node_id + target_node_id + relationship_name
if edge_key not in existing_edges_map:
graph_edges.append((
generate_node_id(edge.source_node_id),
generate_node_id(edge.target_node_id),
edge.relationship_name,
dict(
relationship_name = generate_name(edge.relationship_name),
source_node_id = generate_node_id(edge.source_node_id),
target_node_id = generate_node_id(edge.target_node_id),
properties = json.dumps(edge.properties),
),
))
existing_edges_map[edge_key] = True
if len(data_points) > 0:
await vector_engine.create_data_points(collection_name, data_points)
if len(graph_nodes) > 0:
await graph_engine.add_nodes(graph_nodes)
if len(graph_edges) > 0:
await graph_engine.add_edges(graph_edges)
return data_chunks

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between 1087a7e and c4c5bf9.

Files selected for processing (1)
  • cognee/tasks/chunk_extract_summary/chunk_extract_summary.py (1 hunks)
Files skipped from review as they are similar to previous changes (1)
  • cognee/tasks/chunk_extract_summary/chunk_extract_summary.py

created_at: datetime
updated_at: datetime

async def graph_decomposition_to_graph_nodes_task(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel], collection_name: str):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

graph_decomposition_to_graph_nodes_task -> decompose_chunks_into_graph or something like that.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between c4c5bf9 and a782286.

Files ignored due to path filters (1)
  • poetry.lock is excluded by !**/*.lock
Files selected for processing (2)
  • cognee/api/v1/cognify/cognify_v2.py (3 hunks)
  • cognee/infrastructure/databases/relational/sqlalchemy/SqlAlchemyAdapter.py (2 hunks)
Additional context used
Ruff
cognee/infrastructure/databases/relational/sqlalchemy/SqlAlchemyAdapter.py

104-104: Local variable trans is assigned to but never used

Remove assignment to unused variable trans

(F841)

Additional comments not posted (3)
cognee/infrastructure/databases/relational/sqlalchemy/SqlAlchemyAdapter.py (1)

61-61: LGTM! The CASCADE option enhances table deletion robustness.

The addition of the CASCADE option ensures that any dependent objects are also removed, preventing potential errors related to dependencies.

cognee/api/v1/cognify/cognify_v2.py (2)

30-38: LGTM! The new imports enhance the pipeline's functionality.

The new task functions replace existing ones, indicating a shift in the methodology used for various tasks in the pipeline.


112-131: LGTM! The updated tasks enhance pipeline capabilities.

The changes focus on improved task specificity and potentially better performance in document processing and chunk management.

Comment on lines 104 to 110
async with connection.begin() as trans:
for table in Base.metadata.sorted_tables:
drop_table_query = text(f'DROP TABLE IF EXISTS {table.name} CASCADE')
await connection.execute(drop_table_query)
print("Database deleted successfully.")
except Exception as e:
print(f"Error deleting database: {e}")
print(f"Error deleting database: {e}")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM! But remove the unused variable trans.

The changes improve the accuracy and reliability of the database deletion process. However, the variable trans is assigned but never used.

-                async with connection.begin() as trans:
+                async with connection.begin():
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
async with connection.begin() as trans:
for table in Base.metadata.sorted_tables:
drop_table_query = text(f'DROP TABLE IF EXISTS {table.name} CASCADE')
await connection.execute(drop_table_query)
print("Database deleted successfully.")
except Exception as e:
print(f"Error deleting database: {e}")
print(f"Error deleting database: {e}")
async with connection.begin():
for table in Base.metadata.sorted_tables:
drop_table_query = text(f'DROP TABLE IF EXISTS {table.name} CASCADE')
await connection.execute(drop_table_query)
print("Database deleted successfully.")
except Exception as e:
print(f"Error deleting database: {e}")
Tools
Ruff

104-104: Local variable trans is assigned to but never used

Remove assignment to unused variable trans

(F841)

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 3

Outside diff range, codebase verification and nitpick comments (4)
cognee/tasks/save_chunks_to_store/save_chunks_to_store.py (2)

12-24: Ensure atomic operations for chunk removal and unlinking.

The current implementations of the functions delete_data_points, remove_connection_to_successors_of, and remove_connection_to_predecessors_of do not ensure atomic operations. This could lead to partial deletions if an error occurs during execution. Please consider implementing transactions or other atomicity mechanisms to ensure that these operations are atomic.

  • cognee/infrastructure/databases/vector/qdrant/QDrantAdapter.py
  • cognee/infrastructure/databases/vector/weaviate_db/WeaviateAdapter.py
  • cognee/infrastructure/databases/vector/lancedb/LanceDBAdapter.py
  • cognee/infrastructure/databases/vector/falkordb/FalkorDBAdapter.py
  • cognee/infrastructure/databases/graph/networkx/adapter.py
  • cognee/infrastructure/databases/graph/neo4j_driver/adapter.py
Analysis chain

Ensure efficient chunk removal and unlinking.

The function efficiently removes and unlinks existing chunks if the collection exists. Ensure that the operations are atomic to avoid partial deletions.

Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify atomicity of chunk removal and unlinking operations.

# Test: Search for atomic operations in the functions. Expect: Proper atomicity mechanisms.
rg --type python -A 5 $'def delete_data_points'
rg --type python -A 5 $'def remove_connection_to_successors_of'
rg --type python -A 5 $'def remove_connection_to_predecessors_of'

Length of output: 273


Script:

#!/bin/bash
# Description: Verify atomicity of chunk removal and unlinking operations.

# Corrected Test: Search for atomic operations in the functions. Expect: Proper atomicity mechanisms.
rg -A 5 $'def delete_data_points'
rg -A 5 $'def remove_connection_to_successors_of'
rg -A 5 $'def remove_connection_to_predecessors_of'

Length of output: 5735


9-10: Ensure proper initialization of engines.

The get_vector_engine and get_graph_engine functions have minimal error handling. The create_vector_engine function raises an EnvironmentError if the configuration is incorrect, but it could benefit from more specific exception handling and logging. The get_graph_engine function uses bare except statements, which should be replaced with specific exception handling and error logging.

  • File: cognee/infrastructure/databases/vector/create_vector_engine.py
    • Improve error handling by catching specific exceptions and logging errors.
  • File: cognee/infrastructure/databases/graph/get_graph_engine.py
    • Replace bare except statements with specific exception handling and error logging.
Analysis chain

Ensure proper initialization of engines.

The vector and graph engines are correctly initialized. Ensure that get_vector_engine and get_graph_engine handle errors properly.

Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify error handling in `get_vector_engine` and `get_graph_engine`.

# Test: Search for error handling in the functions. Expect: Proper error handling mechanisms.
rg --type python -A 5 $'def get_vector_engine'
rg --type python -A 5 $'def get_graph_engine'

Length of output: 156


Script:

#!/bin/bash
# Description: Verify error handling in `get_vector_engine` and `get_graph_engine`.

# Test: Search for error handling in the functions. Expect: Proper error handling mechanisms.
rg -A 10 'def get_vector_engine'
rg -A 10 'def get_graph_engine'

Length of output: 1406


Script:

#!/bin/bash
# Description: Verify error handling in `create_vector_engine` and `get_vectordb_config`, and get more context for `get_graph_engine`.

# Test: Search for error handling in `create_vector_engine` and `get_vectordb_config`.
rg -A 10 'def create_vector_engine'
rg -A 10 'def get_vectordb_config'

# Get more context for `get_graph_engine`.
rg -A 20 'def get_graph_engine'

Length of output: 3387

cognee/tasks/chunks_into_graph/chunks_into_graph.py (2)

29-32: Consider logging collection creation.

Adding logging when a new collection is created can help with debugging and monitoring.

+        await vector_engine.create_collection(collection_name, payload_schema = EntityNode)
+        print(f"Created new collection: {collection_name}")

203-210: Consider adding logging for node and edge additions.

Adding logging when nodes and edges are added can help with debugging and monitoring.

+        await vector_engine.create_data_points(collection_name, data_points)
+        print(f"Added {len(data_points)} data points to collection: {collection_name}")

+        await graph_engine.add_nodes(graph_nodes)
+        print(f"Added {len(graph_nodes)} nodes to graph engine")

+        await graph_engine.add_edges(graph_edges)
+        print(f"Added {len(graph_edges)} edges to graph engine")
Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between a782286 and 557014e.

Files selected for processing (5)
  • cognee/api/v1/cognify/cognify_v2.py (3 hunks)
  • cognee/tasks/init.py (1 hunks)
  • cognee/tasks/chunks_into_graph/chunks_into_graph.py (1 hunks)
  • cognee/tasks/save_chunks_to_store/save_chunks_to_store.py (1 hunks)
  • pyproject.toml (1 hunks)
Files skipped from review due to trivial changes (1)
  • cognee/tasks/init.py
Additional comments not posted (20)
pyproject.toml (2)

86-86: Dependency addition looks good.

The langchain dependency has been correctly added to the notebook section.


89-89: Installation command addition looks good.

The command for installing the cognee package with the langchain extra has been correctly added.

cognee/tasks/save_chunks_to_store/save_chunks_to_store.py (4)

5-7: Handle empty data chunks gracefully.

The function correctly handles the case where data_chunks is empty by returning early.


88-97: Function looks good.

The function correctly retrieves the previous chunk ID based on the chunk index.


39-83: Efficiently add nodes and edges to graph storage.

The function efficiently adds nodes and edges to graph storage. Ensure that the add_nodes and add_edges functions handle large data sets efficiently.


27-37: Efficiently add data points to vector storage.

The function efficiently adds data points to vector storage. Ensure that the create_data_points function handles large data sets efficiently.

cognee/api/v1/cognify/cognify_v2.py (8)

38-38: Import looks good.

The source_documents_to_chunks task function has been correctly imported.


30-30: Import looks good.

The chunk_extract_summary_task task function has been correctly imported.


31-31: Import looks good.

The chunk_naive_llm_classifier_task task function has been correctly imported.


32-32: Import looks good.

The chunk_remove_disconnected_task task function has been correctly imported.


33-33: Import looks good.

The chunk_to_graph_decomposition_task task function has been correctly imported.


34-34: Import looks good.

The save_chunks_to_store_task task function has been correctly imported.


35-35: Import looks good.

The chunk_update_check_task task function has been correctly imported.


36-37: Import looks good.

The chunks_into_graph_task task function has been correctly imported.

cognee/tasks/chunks_into_graph/chunks_into_graph.py (6)

13-19: Class EntityNode looks good.

The class definition is correct and follows Pydantic's syntax.


212-213: Return statement looks good.

The return statement is correct and returns the processed data chunks.


215-216: Function generate_name looks good.

The function correctly converts a name to a lowercase, underscored string.


218-219: Function generate_node_id looks good.

The function correctly converts a node ID to a lowercase, underscored string.


1-11: Ensure all imports are necessary.

Review the imports to ensure they are all required. For instance, datetime and timezone are used, but if they are not, they should be removed.

Verification successful

The imports are necessary.

The datetime and timezone imports are used within the file.

  • created_at: datetime
  • updated_at: datetime
  • created_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
  • updated_at = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify the usage of imported modules.

# Test: Search for the usage of datetime and timezone. Expect: Occurrences of their usage.
rg --type python 'datetime|timezone'

Length of output: 69


Script:

#!/bin/bash
# Description: Verify the usage of imported modules within the specific file.

# Test: Search for the usage of datetime and timezone within the specific file.
rg 'datetime|timezone' cognee/tasks/chunks_into_graph/chunks_into_graph.py

Length of output: 530


73-202: Ensure consistency in node and edge creation.

Ensure that the node and edge creation logic is consistent and handles all edge cases.

Comment on lines 39 to 57
for (chunk_index, chunk) in enumerate(data_chunks):
chunk_graph = chunk_graphs[chunk_index]
for node in chunk_graph.nodes:
type_node_id = generate_node_id(node.type)
entity_node_id = generate_node_id(node.id)

if type_node_id not in processed_nodes:
type_node_edges.append((str(chunk.chunk_id), type_node_id, "contains_entity_type"))
processed_nodes[type_node_id] = True

if entity_node_id not in processed_nodes:
entity_node_edges.append((str(chunk.chunk_id), entity_node_id, "contains_entity"))
type_entity_edges.append((entity_node_id, type_node_id, "is_entity_type"))
processed_nodes[entity_node_id] = True

graph_node_edges = [
(edge.source_node_id, edge.target_node_id, edge.relationship_name) \
for edge in chunk_graph.edges
]
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Consider breaking down the loop into smaller functions.

The nested loops and conditionals can be refactored into smaller functions for better readability and maintainability.

async def process_chunk_graphs(data_chunks, chunk_graphs):
    processed_nodes = {}
    type_node_edges = []
    entity_node_edges = []
    type_entity_edges = []

    for (chunk_index, chunk) in enumerate(data_chunks):
        chunk_graph = chunk_graphs[chunk_index]
        for node in chunk_graph.nodes:
            type_node_id = generate_node_id(node.type)
            entity_node_id = generate_node_id(node.id)

            if type_node_id not in processed_nodes:
                type_node_edges.append((str(chunk.chunk_id), type_node_id, "contains_entity_type"))
                processed_nodes[type_node_id] = True

            if entity_node_id not in processed_nodes:
                entity_node_edges.append((str(chunk.chunk_id), entity_node_id, "contains_entity"))
                type_entity_edges.append((entity_node_id, type_node_id, "is_entity_type"))
                processed_nodes[entity_node_id] = True

    return processed_nodes, type_node_edges, entity_node_edges, type_entity_edges

Comment on lines 59 to 71
existing_edges = await graph_engine.has_edges([
*type_node_edges,
*entity_node_edges,
*type_entity_edges,
*graph_node_edges,
])

existing_edges_map = {}
existing_nodes_map = {}

for edge in existing_edges:
existing_edges_map[edge[0] + edge[1] + edge[2]] = True
existing_nodes_map[edge[0]] = True
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Consider optimizing edge existence check.

The current approach of checking for existing edges can be optimized for performance by reducing the number of calls to the graph engine.

existing_edges = await graph_engine.has_edges(type_node_edges + entity_node_edges + type_entity_edges + graph_node_edges)

Comment on lines 21 to 27
async def chunks_into_graph_task(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel], collection_name: str):
chunk_graphs = await asyncio.gather(
*[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks]
)

vector_engine = get_vector_engine()
graph_engine = await get_graph_engine()
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ensure error handling for asynchronous calls.

Consider adding error handling for the asynchronous calls to extract_content_graph, get_vector_engine, and get_graph_engine.

+    try:
+        chunk_graphs = await asyncio.gather(
+            *[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks]
+        )
+    except Exception as e:
+        # Handle or log the exception
+        raise e

+    try:
+        vector_engine = get_vector_engine()
+    except Exception as e:
+        # Handle or log the exception
+        raise e

+    try:
+        graph_engine = await get_graph_engine()
+    except Exception as e:
+        # Handle or log the exception
+        raise e
Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
async def chunks_into_graph_task(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel], collection_name: str):
chunk_graphs = await asyncio.gather(
*[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks]
)
vector_engine = get_vector_engine()
graph_engine = await get_graph_engine()
async def chunks_into_graph_task(data_chunks: list[DocumentChunk], graph_model: Type[BaseModel], collection_name: str):
try:
chunk_graphs = await asyncio.gather(
*[extract_content_graph(chunk.text, graph_model) for chunk in data_chunks]
)
except Exception as e:
# Handle or log the exception
raise e
try:
vector_engine = get_vector_engine()
except Exception as e:
# Handle or log the exception
raise e
try:
graph_engine = await get_graph_engine()
except Exception as e:
# Handle or log the exception
raise e

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

Outside diff range, codebase verification and nitpick comments (1)
cognee/api/v1/add/add.py (1)

131-131: Ensure proper transaction management and error handling.

The addition of await session.commit() ensures that changes are persisted to the database. However, there are no explicit error handling or transaction management mechanisms (e.g., try-except blocks, rollback) found in the cognee/api/v1/add/add.py file. Please verify and implement proper transaction management and error handling to ensure data consistency and reliability.

  • File: cognee/api/v1/add/add.py
  • Lines: Around the data_resources function and its usage.
Analysis chain

LGTM! Ensure proper transaction management and error handling.

The addition of await session.commit() ensures that changes are persisted to the database. This is a crucial step for data consistency.

However, verify that transaction management and error handling are properly handled throughout the function and any calling code.

Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify proper transaction management and error handling in the calling code.

# Test: Search for the function usage. Expect: Proper error handling and transaction management.
rg --type python -A 5 $'data_resources'

Length of output: 69


Script:

#!/bin/bash
# Description: Verify proper transaction management and error handling in the calling code.

# Test: Search for the function usage. Expect: Proper error handling and transaction management.
rg --type py -A 5 $'data_resources'

Length of output: 836


Script:

#!/bin/bash
# Description: Fetch more context around the usage of `data_resources` to verify transaction management and error handling.

# Test: Search for the function usage and fetch additional lines of context.
rg --type py -A 10 -B 10 $'data_resources'

Length of output: 2303


Script:

#!/bin/bash
# Description: Search for transaction management and error handling mechanisms within the `cognee/api/v1/add/add.py` file.

# Test: Search for try-except blocks and rollback calls to verify error handling and transaction management.
rg --type py 'try:|except|rollback' cognee/api/v1/add/add.py

Length of output: 62

Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between 557014e and 2e36719.

Files selected for processing (5)
  • cognee/api/v1/add/add.py (1 hunks)
  • cognee/infrastructure/databases/relational/sqlalchemy/SqlAlchemyAdapter.py (3 hunks)
  • cognee/modules/search/llm/get_relevant_summary.py (1 hunks)
  • cognee/tasks/chunk_extract_summary/chunk_extract_summary.py (2 hunks)
  • cognee/tests/test_library.py (2 hunks)
Files skipped from review due to trivial changes (1)
  • cognee/modules/search/llm/get_relevant_summary.py
Files skipped from review as they are similar to previous changes (2)
  • cognee/infrastructure/databases/relational/sqlalchemy/SqlAlchemyAdapter.py
  • cognee/tasks/chunk_extract_summary/chunk_extract_summary.py
Additional comments not posted (2)
cognee/tests/test_library.py (2)

9-9: Improved readability.

The added empty line at the beginning of the main function improves readability.


73-73: Enabled debug mode for asyncio.

The inclusion of debug=True in the asyncio.run(main(), debug=True) call enables debug mode for the asyncio event loop, aiding in identifying issues during asynchronous code execution.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 1

Outside diff range, codebase verification and nitpick comments (4)
cognee/tasks/document_to_ontology/document_to_ontology.py (1)

Line range hint 54-157:
Consider refactoring add_graph_topology.

The method add_graph_topology could be refactored to improve readability and efficiency. Consider breaking down the logic into smaller helper functions, especially for file processing and chunk handling.

async def process_files(files, chunk_engine, chunk_strategy, chunk_config):
    initial_chunks_and_ids = []
    for base_file in files:
        with open(base_file["file_path"], "rb") as file:
            try:
                file_type = guess_file_type(file)
                text = extract_text_from_file(file, file_type)
                subchunks, chunks_with_ids = chunk_engine.chunk_data(chunk_strategy, text, chunk_config.chunk_size, chunk_config.chunk_overlap)
                if chunks_with_ids[0][0] == 1:
                    initial_chunks_and_ids.append({base_file["id"]: chunks_with_ids})
            except FileTypeException:
                logger.warning("File (%s) has an unknown file type. We are skipping it.", file["id"])
    return initial_chunks_and_ids

# Usage in add_graph_topology
initial_chunks_and_ids = await process_files(files, chunk_engine, chunk_strategy, chunk_config)
docs/index.md (3)

4-4: Fix heading level and spacing.

The heading level should increment by one, and there should be no multiple spaces after the hash.

-####  Deterministic LLMs Outputs for AI Engineers
+## Deterministic LLMs Outputs for AI Engineers

8-8: Use a heading instead of emphasis.

The introduction should use a heading for better readability and structure.

-_Open-source framework for loading and structuring LLM context to create accurate and explainable AI solutions using knowledge graphs and vector stores_
+### Open-source Framework for LLM Context Structuring

47-47: Remove or complete the empty link.

The empty link placeholder should be removed or completed to avoid confusion.

-[//]: # (- **Case Studies** — Read about [case studies](case_studies.md) that show how cognee can be used in real-world applications.)
+// Remove or complete this link placeholder
Tools
Markdownlint

47-47: null
No empty links

(MD042, no-empty-links)

Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between 2e36719 and 85160da.

Files selected for processing (3)
  • cognee/api/v1/cognify/cognify_v2.py (3 hunks)
  • cognee/tasks/document_to_ontology/document_to_ontology.py (4 hunks)
  • docs/index.md (1 hunks)
Files skipped from review as they are similar to previous changes (1)
  • cognee/api/v1/cognify/cognify_v2.py
Additional context used
Markdownlint
docs/index.md

5-5: Expected: h2; Actual: h4
Heading levels should only increment by one level at a time

(MD001, heading-increment)


5-5: null
Multiple spaces after hash on atx style heading

(MD019, no-multiple-space-atx)


9-9: null
Emphasis used instead of a heading

(MD036, no-emphasis-as-heading)


47-47: null
No empty links

(MD042, no-empty-links)

Additional comments not posted (3)
cognee/tasks/document_to_ontology/document_to_ontology.py (2)

42-53: LGTM!

The function infer_data_topology is well-implemented with proper error handling and logging.


32-39: Verify the system prompt file.

Ensure that the extract_topology.txt file exists and is correctly formatted to avoid runtime errors.

Verification successful

System prompt file exists and is non-empty.

The extract_topology.txt file is present and contains content. Please ensure that the file's content is correctly formatted according to your application's requirements to avoid runtime errors.

Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify the existence and format of the system prompt file.

# Test: Check if the file exists. Expect: File should exist.
if [[ ! -f "cognee/infrastructure/llm/prompts/extract_topology.txt" ]]; then
  echo "File extract_topology.txt does not exist."
  exit 1
fi

# Test: Check if the file is non-empty. Expect: File should have content.
if [[ ! -s "cognee/infrastructure/llm/prompts/extract_topology.txt" ]]; then
  echo "File extract_topology.txt is empty."
  exit 1
fi

echo "File extract_topology.txt exists and is non-empty."

Length of output: 246

docs/index.md (1)

52-61: Vision and Architecture sections look great!

These sections are well-structured and visually engaging.

Comment on lines +168 to +182
async def document_to_ontology(data, root_node_id):
cognee_config = get_cognify_config()
graph_config = get_graph_config()
root_node_id = None
if graph_config.infer_graph_topology and graph_config.graph_topology_task:
topology_engine = TopologyEngine(infer=graph_config.infer_graph_topology)
root_node_id = await topology_engine.add_graph_topology(files=data)
elif graph_config.infer_graph_topology and not graph_config.infer_graph_topology:

topology_engine = TopologyEngine(infer=graph_config.infer_graph_topology)
await topology_engine.add_graph_topology(graph_config.topology_file_path)
elif not graph_config.graph_topology_task:
root_node_id = "ROOT"

yield (data, root_node_id)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Simplify root node ID logic.

The logic for setting the root_node_id can be simplified by consolidating conditions.

root_node_id = "ROOT" if not graph_config.graph_topology_task else None
if graph_config.infer_graph_topology:
    topology_engine = TopologyEngine(infer=True)
    if graph_config.graph_topology_task:
        root_node_id = await topology_engine.add_graph_topology(files=data)
    else:
        await topology_engine.add_graph_topology(graph_config.topology_file_path)

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

Outside diff range, codebase verification and nitpick comments (7)
cognee/tasks/source_documents_to_chunks/source_documents_to_chunks.py (7)

2-2: Consider renaming the import for clarity.

The import Document from document_types.Document might be clearer if aliased to avoid confusion with other potential Document classes.

from cognee.modules.data.processing.document_types.Document import Document as SourceDocument

11-11: Initialize lists after checking parent_node_id.

Initializing nodes and edges after the parent_node_id check improves readability by logically grouping related operations.

-    nodes = []
-    edges = []

    if parent_node_id and await graph_engine.extract_node(parent_node_id) is None:
        nodes.append((parent_node_id, {}))

+    nodes = []
+    edges = []

Line range hint 20-20:
Ensure proper error handling for node extraction.

The call to graph_engine.extract_nodes should include error handling to manage potential exceptions.

try:
    document_nodes = await graph_engine.extract_nodes([str(document.id) for document in documents])
except Exception as e:
    # Handle the exception or log it
    raise e

Line range hint 22-23:
Fix the logic for accessing document_nodes.

The line document_nodes[document_index] if document_index in document_nodes is incorrect. document_nodes is likely a list, not a dictionary, and should be accessed using the index directly.

-    document_node = document_nodes[document_index] if document_index in document_nodes else None
+    document_node = document_nodes[document_index] if document_index < len(document_nodes) else None

Line range hint 25-25:
Avoid redundant calls to document.to_dict().

The document.to_dict() method is called twice for the same document. Store the result in a variable to avoid redundancy.

-    document_dict = document.to_dict()
+    document_dict = document.to_dict()
     document_dict["user"] = user
     document_dict["user_permissions"] = user_permissions
-    nodes.append((str(document.id), document.to_dict()))
+    nodes.append((str(document.id), document_dict))

Line range hint 40-40:
Consider handling exceptions for add_nodes and add_edges.

Ensure that any exceptions during the addition of nodes and edges are handled to prevent the function from failing silently.

try:
    await graph_engine.add_nodes(nodes)
    await graph_engine.add_edges(edges)
except Exception as e:
    # Handle the exception or log it
    raise e

Line range hint 46-48:
Consider yielding document chunks in a try-except block.

Wrap the chunk reading and yielding logic in a try-except block to handle any potential errors during document reading.

try:
    for document_chunk in document_reader.read(max_chunk_size=1024):
        yield document_chunk
except Exception as e:
    # Handle the exception or log it
    raise e
Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between 85160da and 156c7be.

Files selected for processing (1)
  • cognee/tasks/source_documents_to_chunks/source_documents_to_chunks.py (1 hunks)
Additional comments not posted (1)
cognee/tasks/source_documents_to_chunks/source_documents_to_chunks.py (1)

8-9: Verify the unpacking logic when parent_node_id is None.

The line documents, parent_node_id = documents assumes that documents is a tuple containing both documents and a parent node ID. This may lead to runtime errors if documents is not structured as expected.

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between 156c7be and 1c9bbd7.

Files selected for processing (2)
  • cognee/api/v1/cognify/cognify_v2.py (3 hunks)
  • cognee/infrastructure/databases/relational/sqlalchemy/SqlAlchemyAdapter.py (3 hunks)
Files skipped from review as they are similar to previous changes (1)
  • cognee/infrastructure/databases/relational/sqlalchemy/SqlAlchemyAdapter.py
Additional comments not posted (2)
cognee/api/v1/cognify/cognify_v2.py (2)

22-31: Imports are appropriate for the task updates.

The new imports correspond to the updated task functions and are necessary for the changes in the pipeline.


93-113: Task updates enhance pipeline functionality.

The updates to task functions improve the modularity and specificity of the pipeline. Each task is now more focused on a specific operation, which can lead to better performance and maintainability. Ensure that these new task functions are thoroughly tested and integrated with the existing system.

Verification successful

Task functions confirmed in the codebase.

The new task functions exist and are defined in their respective modules. This confirms the updates to the pipeline are correctly implemented as per the review comment. Ensure these functions are integrated and tested within the system.

  • source_documents_to_chunks in cognee/tasks/source_documents_to_chunks/source_documents_to_chunks.py
  • chunk_to_graph_decomposition_task in cognee/tasks/chunk_to_graph_decomposition/chunk_to_graph_decomposition.py
  • chunks_into_graph_task in cognee/tasks/chunks_into_graph/chunks_into_graph.py
  • chunk_update_check_task in cognee/tasks/chunk_update_check/chunk_update_check.py
  • save_chunks_to_store_task in cognee/tasks/save_chunks_to_store/save_chunks_to_store.py
  • chunk_extract_summary_task in cognee/tasks/chunk_extract_summary/chunk_extract_summary.py
  • chunk_naive_llm_classifier_task in cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py
  • chunk_remove_disconnected_task in cognee/tasks/chunk_remove_disconnected/chunk_remove_disconnected.py
Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify the existence and usage of the new task functions in the repository.

# Test: Search for the new task functions to confirm their existence and usage.
ast-grep --lang python --pattern $'def source_documents_to_chunks($_):\n  $$$'
ast-grep --lang python --pattern $'def chunk_to_graph_decomposition_task($_):\n  $$$'
ast-grep --lang python --pattern $'def chunks_into_graph_task($_):\n  $$$'
ast-grep --lang python --pattern $'def chunk_update_check_task($_):\n  $$$'
ast-grep --lang python --pattern $'def save_chunks_to_store_task($_):\n  $$$'
ast-grep --lang python --pattern $'def chunk_extract_summary_task($_):\n  $$$'
ast-grep --lang python --pattern $'def chunk_naive_llm_classifier_task($_):\n  $$$'
ast-grep --lang python --pattern $'def chunk_remove_disconnected_task($_):\n  $$$'

Length of output: 639


Script:

#!/bin/bash
# Description: Verify the existence and usage of the new task functions using ripgrep.

# Test: Search for the new task function names to confirm their existence and usage.
rg 'def source_documents_to_chunks' --glob '*.py' -A 5
rg 'def chunk_to_graph_decomposition_task' --glob '*.py' -A 5
rg 'def chunks_into_graph_task' --glob '*.py' -A 5
rg 'def chunk_update_check_task' --glob '*.py' -A 5
rg 'def save_chunks_to_store_task' --glob '*.py' -A 5
rg 'def chunk_extract_summary_task' --glob '*.py' -A 5
rg 'def chunk_naive_llm_classifier_task' --glob '*.py' -A 5
rg 'def chunk_remove_disconnected_task' --glob '*.py' -A 5

Length of output: 5717

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

Outside diff range, codebase verification and nitpick comments (5)
cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py (5)

11-13: Ensure proper handling of empty input.

The check for an empty data_chunks list is appropriate, but consider logging this event for better traceability.

if len(data_chunks) == 0:
    logger.info("No data chunks provided for classification.")
    return data_chunks

Line range hint 21-30: Refactor UUID generation logic.

The UUIDs for classification types and subclasses are generated twice. Consider refactoring to avoid redundancy.

classification_type_id = uuid5(NAMESPACE_OID, chunk_classification.label.type)
classification_data_points.append(classification_type_id)

for classification_subclass in chunk_classification.label.subclass:
    classification_subtype_id = uuid5(NAMESPACE_OID, classification_subclass.value)
    classification_data_points.append(classification_subtype_id)

88-90: Clarify edge relationship naming.

The relationship name "is_media_type" might not be intuitive. Consider renaming for clarity or documenting its purpose.

edges.append((
    str(data_chunk.chunk_id),
    str(classification_type_id),
    "has_classification_type",  # Consider renaming for clarity
    dict(
        relationship_name="has_classification_type",
        source_node_id=str(data_chunk.chunk_id),
        target_node_id=str(classification_type_id),
    ),
))

138-140: Clarify edge relationship naming.

The relationship name "is_classified_as" might not be intuitive. Consider renaming for clarity or documenting its purpose.

edges.append((
    str(data_chunk.chunk_id),
    str(classification_subtype_id),
    "classified_as",  # Consider renaming for clarity
    dict(
        relationship_name="classified_as",
        source_node_id=str(data_chunk.chunk_id),
        target_node_id=str(classification_subtype_id),
    ),
))

48-48: Add Conditional Logic for Collection Creation

The file cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py lacks the conditional check for creating a collection only if it does not already exist. Consider implementing this logic to prevent unnecessary collection creation.

  • File: cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py
Analysis chain

Create collection only when necessary.

Creating a collection should be conditional on its non-existence. Ensure this logic is correctly implemented.

Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify that collection creation is conditional.

# Test: Check if the collection creation logic is conditional on its non-existence.
rg --type python $'if not await vector_engine.has_collection(collection_name)'

Length of output: 110


Script:

#!/bin/bash
# Description: Verify that collection creation is conditional.

# Test: Check if the collection creation logic is conditional on its non-existence.
rg 'if not await vector_engine.has_collection(collection_name)' --glob '*.py' -A 3

Length of output: 84


Script:

#!/bin/bash
# Description: Search for any usage of 'has_collection' to verify collection existence checks.

# Test: Find occurrences of 'has_collection' in Python files.
rg 'has_collection' --glob '*.py' -A 3

Length of output: 4999

Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between 1c9bbd7 and 64bec1f.

Files selected for processing (8)
  • cognee/api/v1/cognify/cognify_v2.py (3 hunks)
  • cognee/tasks/chunk_extract_summary/chunk_extract_summary.py (2 hunks)
  • cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py (5 hunks)
  • cognee/tasks/chunk_remove_disconnected/chunk_remove_disconnected.py (1 hunks)
  • cognee/tasks/chunk_to_graph_decomposition/chunk_to_graph_decomposition.py (1 hunks)
  • cognee/tasks/chunk_update_check/chunk_update_check.py (1 hunks)
  • cognee/tasks/chunks_into_graph/chunks_into_graph.py (2 hunks)
  • cognee/tasks/save_chunks_to_store/save_chunks_to_store.py (1 hunks)
Files skipped from review as they are similar to previous changes (6)
  • cognee/tasks/chunk_extract_summary/chunk_extract_summary.py
  • cognee/tasks/chunk_remove_disconnected/chunk_remove_disconnected.py
  • cognee/tasks/chunk_to_graph_decomposition/chunk_to_graph_decomposition.py
  • cognee/tasks/chunk_update_check/chunk_update_check.py
  • cognee/tasks/chunks_into_graph/chunks_into_graph.py
  • cognee/tasks/save_chunks_to_store/save_chunks_to_store.py
Additional comments not posted (5)
cognee/tasks/chunk_naive_llm_classifier/chunk_naive_llm_classifier.py (3)

Line range hint 15-18: Optimize asynchronous classification gathering.

The use of asyncio.gather is correct for concurrent execution. Ensure that extract_categories is implemented as an async function for optimal performance.

Verification successful

Verification Successful: extract_categories is async.

The extract_categories function is correctly implemented as an async function, confirming the appropriate use of asyncio.gather for concurrent execution in the code snippet.

  • Location: cognee/modules/data/extraction/extract_categories.py
Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify that `extract_categories` is an async function.

# Test: Search for the function definition. Expect: The function should be async.
rg --type python $'async def extract_categories'

Length of output: 80


Script:

#!/bin/bash
# Description: Verify that `extract_categories` is an async function.

# Test: Search for the function definition. Expect: The function should be async.
rg $'async def extract_categories'

Length of output: 165


62-69: Use Pydantic's parse_obj cautiously.

The use of Keyword.parse_obj is correct, but ensure that the input dictionary keys match the Pydantic model attributes to avoid runtime errors.

Verification successful

Pydantic model keys verified.

The keys used in the parse_obj dictionary match the attributes of the Keyword Pydantic model, ensuring compatibility and preventing runtime errors.

  • Keyword model attributes: uuid, text, chunk_id, document_id
  • Dictionary keys: "uuid", "text", "chunk_id", "document_id"
Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify that the input dictionary keys match the Pydantic model attributes.

# Test: Check the `Keyword` model definition for attribute consistency.
ast-grep --lang python --pattern $'class Keyword(BaseModel) { $$$ }'

Length of output: 524


Script:

#!/bin/bash
# Description: Locate the `Keyword` class definition and inspect its attributes.

# Search for the `Keyword` class definition in Python files.
rg 'class Keyword' -A 10 --glob '*.py'

Length of output: 1114


125-127: Ensure consistent relationship naming.

The relationship name "contains" should consistently reflect its purpose. Verify if it aligns with the intended relationship semantics.

cognee/api/v1/cognify/cognify_v2.py (2)

22-31: Verify new task imports.

Ensure that the new task imports are correct and exist in the specified paths.

Verification successful

Imports verified successfully.

All the task imports in the specified code snippet exist and are correctly referenced in the codebase. No further action is needed.

Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify the existence and correct import paths for new tasks.

# Test: Check for the existence of each new task file.
fd 'chunk_extract_summary.py' --exec echo "chunk_extract_summary exists"
fd 'chunk_naive_llm_classifier.py' --exec echo "chunk_naive_llm_classifier exists"
fd 'chunk_remove_disconnected.py' --exec echo "chunk_remove_disconnected exists"
fd 'chunk_to_graph_decomposition.py' --exec echo "chunk_to_graph_decomposition exists"
fd 'save_chunks_to_store.py' --exec echo "save_chunks_to_store exists"
fd 'chunk_update_check.py' --exec echo "chunk_update_check exists"
fd 'chunks_into_graph.py' --exec echo "chunks_into_graph exists"
fd 'source_documents_to_chunks.py' --exec echo "source_documents_to_chunks exists"

Length of output: 1376


93-113: Verify task integration and configuration.

Ensure that each task is correctly integrated and configured with the appropriate parameters and models.

Verification successful

Let's verify the presence of the Task class definition in the codebase to ensure the pattern used was correct. I'll search for the Task class definition to confirm its existence.


Let's refine the search to focus on Task instantiations within the cognify_v2.py file to verify the integration and configuration of tasks.


Tasks are correctly integrated and configured.

The tasks within the run_cognify_pipeline function in cognify_v2.py are correctly instantiated with appropriate parameters and models, ensuring their intended functionality in the pipeline.

  • Task instantiations include necessary parameters like root_node_id, parent_node_id, topology_model, task_config, graph_model, collection_name, summarization_model, and classification_model.
Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify the integration and configuration of tasks in `run_cognify_pipeline`.

# Test: Check for the existence of task definitions and their parameters.
ast-grep --lang python --pattern $'class Task($_, $$$)' --json

Length of output: 411


Script:

#!/bin/bash
# Search for the definition of the `Task` class in the codebase.
rg 'class Task' -A 5

Length of output: 1252


Script:

#!/bin/bash
# Search for Task instantiations in the cognify_v2.py file to verify parameter usage.
rg 'Task\(' -A 3 cognee/api/v1/cognify/cognify_v2.py

Length of output: 1620

Copy link
Contributor

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 0

Review details

Configuration used: CodeRabbit UI
Review profile: CHILL

Commits

Files that changed from the base of the PR and between 64bec1f and 3d1afe7.

Files selected for processing (1)
  • .github/workflows/test_common.yml (7 hunks)
Additional comments not posted (4)
.github/workflows/test_common.yml (4)

38-41: Consider cross-platform compatibility.

The matrix strategy is now limited to Ubuntu. Ensure that cross-platform compatibility is not a requirement for your project, as this change will exclude macOS and Windows testing.


62-66: Approved: PostgreSQL health checks.

The addition of health check options for the PostgreSQL service enhances the robustness of the workflow by ensuring the database is ready before running tests.


109-111: Approved: PostgreSQL readiness check.

Using docker exec for the PostgreSQL readiness check ensures accurate assessment of the database's readiness.


Line range hint 155-157:
Important: Matrix job result check.

This step ensures that any failures or cancellations in the matrix jobs are reported, maintaining the integrity of the CI/CD pipeline.

@Vasilije1990 Vasilije1990 merged commit d1ae1ae into main Aug 8, 2024
22 of 23 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants