Skip to content

thomasthebaker/spgci-python

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SPGCI Python Library

Python Client for the S&P Global Commodity Insights API.

Looking for more examples? Check out our Notebook Gallery.

Installation

Requires Python >= 3.9.0.

pip install spgci

Getting Started

Open In Colab

    import spgci as ci

    ci.set_credentials(<username>, <password>, <appkey>)
    mdd = ci.MarketData()

    symbols = ["PCAAS00", "PCAAT00"]
    mdd.get_assessments_by_symbol_current(symbol=symbols)

SPGCI


Alternatively, you can set your credentials via Environment Variables and omit the set_credentials call:

Environment Variable Description
SPGCI_USERNAME Your Username
SPGCI_PASSWORD Your Password
SPGCI_APPKEY Your AppKey

Features

  • Automatically generates token prior to making request.
  • Returns data as a pandas DataFrame (set raw=False to get the raw request.response object).
  • Can auto-paginate response and concatenates into a single DataFrame (set paginate=True to enable).
  • Sets datatype for date and datetime fields in DataFrame.
  • Composes nicely with native python/pandas types. Arguments support lists and pd.Series which are automatically converted into filter expressions.

Datasets Supported

Market Data

import spgci as ci

mdd = ci.MarketData()

mdd.get_symbols(commodity="Crude oil")
# DataFrame of symbols with commodity = "Crude oil".

mdd.get_mdcs(subscribed_only=True)
# DataFrame of all Market Data Categories you are subscribed to.

mdd.get_assessments_by_mdc_current(mdc="ET")
# DataFrame of current assessments for all symbols in the Market Data Category "ET".

Forward Curves

import spgci as ci

fc = ci.ForwardCurves()

fc.get_curves(
    commodity=["Benzene", "Crude oil"],
    derivative_maturity_frequency="Month"
    )
# DataFrame of all curves with commodity in ("Benzene", "Crude Oil") and have a Monthly frequency.

fc.get_assessments(curve_code=["CN003", "CN006"])
# DataFrame of the latest assessments for all symbols in the curves ("CN003", "CN006").

Energy Price Forecast

import spgci as ci

epf = ci.EnergyPriceForecast()

epf.get_prices_shortterm(symbol="PCAAS00", month=[10, 11, 12])
# DataFrame of monthly forecasts for the symbol "PCAAS00" in the last 3 months of the year.

epf.get_prices_longterm(year=[2020, 2021], sector="Energy Transition", delivery_region="Europe")
# DataFrame of the annual forecasts for the years in ("2020", "2021"), where the sector is "Energy Transition" and the delivery region is "Europe".

EWindow Market Data

import spgci as ci
from datetime import date

ewmd = ci.EWindowMarketData()

ewmd.get_markets()
# DataFrame of Markets.

d = date(2023,2,13)
ewmd.get_botes(market=["EU BFOE", "US MidWest"], order_time=d)
# DataFrame of all BOTes in the markets ("EU BFOE", "US MidWest") on Feb 13, 2023.

World Oil Supply

import spgci as ci

wos = ci.WorldOilSupply()

countries = wos.get_reference_data(type=wos.RefTypes.Countries)
# DataFrame of all countries.

wos.get_ownership(country=countries['countryName'][:3], year=2040)
# DataFrame of Ownership for the first three countries from the countries endpoint and year "2040".

World Refinery Database

import spgci as ci

wrd = ci.WorldRefineryData()

wrd.get_yields(year=2020, owner="BP")
# DataFrame of yields for the year "2020" where "BP" is the refinery owner.

ref = wrd.get_reference_data(type=wrd.RefTypes.Refineries)
# DataFrame of all refineries.

az = ref[ref['Name'].str.contains("Al-Zour")]
wrd.get_runs(refinery_id=az["Id"])
# DataFrame of runs for the refineries with "Al-Zour" in the name.

wrd.get_outages(refinery_id=245)
# DataFrame of outages for refineryId 245.

Insights

import spgci as ci

ni = ci.Insights()

ni.get_stories(q="Suez", content_type=ni.ContentType.MarketCommentary)
# DataFrame of articles related to "Suez" where the content type is "Market Commentary".

ni.get_subscriber_notes(q="Naptha")
# DataFrame of all subscriber notes related to "Naptha".

ni.get_heards(q="Steel", content_type=ni.HeardsContentType.Heard, geography=['Europe', 'Middle East'], strip_html=True)
# DataFrame of all Heards related to "Steel" where the geography is in ("Europe", "Middle East") with HTML Tags removed from the headline and body.

Global Oil Demand

import spgci as ci

od = ci.GlobalOilDemand()

od.get_demand(country="Cambodia", product=["Naphtha", "Ethane"])
# DataFrame of forecast monthly demand for ("Naphtha", "Ethane") for Cambodia.

products = od.get_reference_data(type=od.RefTypes.Products)
# DataFrame of all "products" covered by Global Oil Demand dataset.

od.get_demand(product=products["productName"][:3], year_gte=2023)
# DataFrame of forecast monthly demand for the first 3 products in the previous DataFrame and the year >= 2023.

od.get_demand_archive(scenario_id=150, country="Norway")
# DataFrame of an archived (March 2023) forecast of monthly oil demand for Norway.

North America Natural Gas Analytics

import spgci as ci
from datetime import date

ng = ci.NANaturalGasAnalytics()

ng.get_pipelines(state="NJ", facility_type="Interconnect")
# DataFrame of pipelines in "NJ" with facility type "Interconnect"

ng.get_pipelines(pipeline_name="Algonquin")
# DataFrame of pipelines with name "Algonquin"

ng.get_pipeline_flows(pipeline_id=32)
# DataFrame of flows for pipeline_id 32 (Algonquin) for last 2 days.

d = date(2023, 7, 24)
ng.get_pipeline_flows(nomination_cycle="I2", gasdate=d)
# DataFrame of all pipeline flows during the I2 nomination cycle on gas date 2023-07-24

Global Integrated Energy Model

import spgci as ci

giem = ci.GlobalIntegratedEnergyModel()

giem.get_demand(country="Cambodia", product=["Naphtha", "Ethane"])
# DataFrame of energy demand for ("Naphtha", "Ethane") for Cambodia.

giem.get_demand_archive(scenario_id=559, country="Cambodia", product=["Naphtha", "Ethane"])
# DataFrame of an archived demand data of giem for Cambodia.

giem.get_reference_data(type=giem.RefTypes.Products)
# DataFrame of all "products" covered by Global Oil Demand dataset.

Refining Margins & Crude Arbitrage

import spgci as ci

af = ci.Arbflow()

af.get_margins_catalog(location_id = 34, crude_symbol="AAQZB00")
# DataFrame of refining margins catalog for ("AAQZB00") for Location Id 34.

af.get_margins_data(margin_id=229, margin_date='2023-08-16')
# DataFrame of refining margins data of arbflow for '2023-08-16'.

af.get_arbitrage(margin_id=[220,330], base_margin_id=1514, frequency_id=2)
# DataFrame of arbitrage data with frequencyId = 2 (Monthly).

af.get_reference_data(type=af.RefTypes.Locations)
# DataFrame of all "locations" covered by Refining Margins & Crude Arbitrage dataset.

LNG Global Analytics

import spgci as ci

lng = ci.LNGGlobalAnalytics()

lng.get_tenders(country_name="United States", paginate=True)
# DataFrame of tenders with country = 'United States'.

lng.get_tenders(contract_type="FOB", contract_option="Sell")
# DataFrame of tenders with ContractType = "FOB" and ContractOption = "Sell".

lng.get_reference_data(type=lng.RefTypes.LiquefactionProjects)
# DataFrame of liquefaction projects.

lng.get_outages(liquefaction_project_name="ADNOC LNG")
# DataFrame of all LNG outages tied to "ADNOC LNG".

lng.get_netbacks(date_gt="2024-01-01", import_geography="Brazil")
# DataFrame of all LNG Netbacks where import geography is 'Brazil' since Jan 1, 2024.

Crude Analytics

import spgci as ci

ca = ci.CrudeAnalytics()

ca.get_country_scores(status="Current")
# DataFrame of latest scores for all countries.

ca.get_country_scores(country="United States")
# DataFrame of all (historical and current) scores for country = "United States".

ca.get_country_total_scores()
# DataFrame of aggregated scores, supply and capacity per date.

Weather

import spgci as ci

w = ci.Weather()

w.get_forecast(city="Boston")
# DataFrame of forecasts for Boston

w.get_forecast(market="United States", weather_date_gte="2024-01-01", weather_date_lte="2024-01-31")
# DateFrame of forecasts in the United States in January 2024.

w.get_actual(market="Hong Kong", paginate=True)
# DataFrame of actual weather in Hong Kong, paginate=True to get full history.

Structured Heards

import spgci as ci

sh = ci.StructuredHeards()

sh.get_markets()
# DataFrame of the list of markets that have structured heards.

sh.get_heards(market="Americas crude oil", heard_type="trade")
# DateFrame of heards in the Americas crude oil market that are of type 'trade'.

About

Python SDK for SPGCI APIs

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%