forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Refactor generate_vbe_metadata (pytorch#3087)
Summary: Pull Request resolved: pytorch#3087 Moves `generate_vbe_metadata` into the `fbgemm_gpu.split_table_batched_embeddings_ops_training_common`. This is a preparation for VBE enablement in SSD-TBE Reviewed By: q10 Differential Revision: D62215222
- Loading branch information
1 parent
3fce106
commit e747934
Showing
2 changed files
with
170 additions
and
136 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
144 changes: 144 additions & 0 deletions
144
fbgemm_gpu/fbgemm_gpu/split_table_batched_embeddings_ops_training_common.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
from typing import List, Optional | ||
|
||
import torch | ||
from torch import Tensor | ||
|
||
import fbgemm_gpu.split_embedding_codegen_lookup_invokers as invokers | ||
from fbgemm_gpu.split_embedding_configs import EmbOptimType as OptimType | ||
from fbgemm_gpu.split_table_batched_embeddings_ops_common import PoolingMode | ||
|
||
try: | ||
try: | ||
from torch.compiler import is_compiling | ||
|
||
def is_torchdynamo_compiling() -> bool: # type: ignore[misc] | ||
# at least one test fails if we import is_compiling as a different name | ||
return is_compiling() | ||
|
||
except Exception: | ||
# torch.compiler.is_compiling is not available in torch 1.10 | ||
from torch._dynamo import is_compiling as is_torchdynamo_compiling | ||
except Exception: | ||
|
||
def is_torchdynamo_compiling() -> bool: # type: ignore[misc] | ||
return False | ||
|
||
|
||
def generate_vbe_metadata( | ||
offsets: Tensor, | ||
batch_size_per_feature_per_rank: Optional[List[List[int]]], | ||
optimizer: OptimType, | ||
pooling_mode: PoolingMode, | ||
feature_dims_cpu: Tensor, | ||
device: torch.device, | ||
) -> invokers.lookup_args.VBEMetadata: | ||
""" | ||
Generate VBE metadata based on batch_size_per_feature_per_rank. | ||
Metadata includes: | ||
1) B_offsets - A tensor that contains batch size offsets for each | ||
feature | ||
2) output_offsets_feature_rank - A tensor that contains output | ||
offsets for each feature | ||
3) B_offsets_per_rank_per_feature - A tensor that contains batch | ||
size offsets for each feature | ||
and rank | ||
4) max_B - The maximum batch size for all features | ||
5) max_B_feature_rank - The maximum batch size for all ranks and | ||
features | ||
6) output_size - The output size (number of elements) | ||
""" | ||
if batch_size_per_feature_per_rank is not None: | ||
assert ( | ||
pooling_mode != PoolingMode.NONE | ||
), "Variable batch size TBE support is not enabled for PoolingMode.NONE" | ||
# TODO: Add input check | ||
zero_tensor = torch.zeros(1, device="cpu", dtype=torch.int32) | ||
|
||
# Create B offsets | ||
total_batch_size_per_feature = torch.tensor( | ||
batch_size_per_feature_per_rank, dtype=torch.int32, device="cpu" | ||
).sum(dim=1) | ||
|
||
max_B = total_batch_size_per_feature.max().item() | ||
if not torch.jit.is_scripting() and is_torchdynamo_compiling(): | ||
torch._check_is_size(max_B) | ||
torch._check(max_B < offsets.numel()) | ||
|
||
Bs = torch.concat([zero_tensor, total_batch_size_per_feature]) | ||
B_offsets = Bs.cumsum(dim=0).to(torch.int) | ||
|
||
# Create output offsets | ||
B_feature_rank = torch.tensor( | ||
batch_size_per_feature_per_rank, | ||
device="cpu", | ||
dtype=torch.int64, | ||
) | ||
max_B_feature_rank = B_feature_rank.max().item() | ||
if not torch.jit.is_scripting() and is_torchdynamo_compiling(): | ||
torch._check_is_size(max_B_feature_rank) | ||
torch._check(max_B_feature_rank <= offsets.size(0)) | ||
output_sizes_feature_rank = B_feature_rank.transpose( | ||
0, 1 | ||
) * feature_dims_cpu.view(1, -1) | ||
output_offsets_feature_rank = torch.concat( | ||
[ | ||
zero_tensor.to(torch.int64), | ||
output_sizes_feature_rank.flatten().cumsum(dim=0), | ||
] | ||
) | ||
output_size = output_offsets_feature_rank[-1].item() | ||
if not torch.jit.is_scripting() and is_torchdynamo_compiling(): | ||
torch._check_is_size(output_size) | ||
|
||
# TODO: Support INT8 output | ||
# B_offsets_rank_per_feature is for rank and (b, t) mapping | ||
B_offsets_rank_per_feature = ( | ||
torch.tensor( | ||
[ | ||
[0] + batch_size_per_feature | ||
for batch_size_per_feature in batch_size_per_feature_per_rank | ||
], | ||
device="cpu", | ||
dtype=torch.int32, | ||
) | ||
.cumsum(dim=1) | ||
.to(torch.int) | ||
) | ||
|
||
B_offsets = B_offsets.to(device, non_blocking=True) | ||
output_offsets_feature_rank = output_offsets_feature_rank.to( | ||
device, non_blocking=True | ||
) | ||
B_offsets_rank_per_feature = B_offsets_rank_per_feature.to( | ||
device, non_blocking=True | ||
) | ||
|
||
# TODO: Use int32 for B_offsets and int64 for output_offsets_feature_rank | ||
vbe_metadata = invokers.lookup_args.VBEMetadata( | ||
B_offsets=B_offsets, | ||
output_offsets_feature_rank=output_offsets_feature_rank, | ||
B_offsets_rank_per_feature=B_offsets_rank_per_feature, | ||
# pyre-ignore | ||
max_B=max_B, | ||
# pyre-ignore | ||
max_B_feature_rank=max_B_feature_rank, | ||
# pyre-ignore | ||
output_size=output_size, | ||
) | ||
else: | ||
vbe_metadata = invokers.lookup_args.VBEMetadata( | ||
B_offsets=None, | ||
output_offsets_feature_rank=None, | ||
B_offsets_rank_per_feature=None, | ||
max_B=-1, | ||
max_B_feature_rank=-1, | ||
output_size=-1, | ||
) | ||
return vbe_metadata |