Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FEA] add the support of masked_matmul #2362

Merged
merged 5 commits into from
Jul 24, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions cpp/bench/prims/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,7 @@ if(BUILD_PRIMS_BENCH)
PATH
linalg/add.cu
linalg/map_then_reduce.cu
linalg/masked_matmul.cu
linalg/matrix_vector_op.cu
linalg/norm.cu
linalg/normalize.cu
Expand Down
268 changes: 268 additions & 0 deletions cpp/bench/prims/linalg/masked_matmul.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,268 @@
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <common/benchmark.hpp>

#include <raft/core/device_resources.hpp>
#include <raft/core/resource/cublas_handle.hpp>
#include <raft/core/resource/cuda_stream.hpp>
#include <raft/core/resources.hpp>
#include <raft/distance/distance.cuh>
#include <raft/distance/distance_types.hpp>
#include <raft/random/rng.cuh>
#include <raft/sparse/linalg/masked_matmul.hpp>
#include <raft/util/itertools.hpp>

#include <cusparse_v2.h>

#include <random>
#include <sstream>
#include <vector>

namespace raft::bench::linalg {

template <typename value_t>
struct MaskedMatmulBenchParams {
size_t m;
size_t k;
size_t n;
float sparsity;
value_t alpha = 1.0;
value_t beta = 0.0;
};

template <typename value_t>
inline auto operator<<(std::ostream& os, const MaskedMatmulBenchParams<value_t>& params)
-> std::ostream&
{
os << " m*k*n=" << params.m << "*" << params.k << "*" << params.n
<< "\tsparsity=" << params.sparsity;
if (params.sparsity == 1.0) { os << "<-inner product for comparison"; }
return os;
}

template <typename value_t, typename index_t = int64_t, typename bitmap_t = uint32_t>
struct MaskedMatmulBench : public fixture {
MaskedMatmulBench(const MaskedMatmulBenchParams<value_t>& p)
: fixture(true),
params(p),
handle(stream),
a_data_d(0, stream),
b_data_d(0, stream),
c_indptr_d(0, stream),
c_indices_d(0, stream),
c_data_d(0, stream),
bitmap_d(0, stream),
c_dense_data_d(0, stream)
{
index_t element = raft::ceildiv(index_t(params.m * params.n), index_t(sizeof(bitmap_t) * 8));
std::vector<bitmap_t> bitmap_h(element);

a_data_d.resize(params.m * params.k, stream);
b_data_d.resize(params.k * params.n, stream);
bitmap_d.resize(element, stream);

raft::random::RngState rng(2024ULL);
raft::random::uniform(
handle, rng, a_data_d.data(), params.m * params.k, value_t(-1.0), value_t(1.0));
raft::random::uniform(
handle, rng, b_data_d.data(), params.k * params.n, value_t(-1.0), value_t(1.0));

std::vector<bool> c_dense_data_h(params.m * params.n);

c_true_nnz = create_sparse_matrix(params.m, params.n, params.sparsity, bitmap_h);

std::vector<value_t> values(c_true_nnz);
std::vector<index_t> indices(c_true_nnz);
std::vector<index_t> indptr(params.m + 1);

c_data_d.resize(c_true_nnz, stream);
c_indptr_d.resize(params.m + 1, stream);
c_indices_d.resize(c_true_nnz, stream);
c_dense_data_d.resize(params.m * params.n, stream);

cpu_convert_to_csr(bitmap_h, params.m, params.n, indices, indptr);
RAFT_EXPECTS(c_true_nnz == c_indices_d.size(),
"Something wrong. The c_true_nnz != c_indices_d.size()!");

update_device(c_data_d.data(), values.data(), c_true_nnz, stream);
update_device(c_indices_d.data(), indices.data(), c_true_nnz, stream);
update_device(c_indptr_d.data(), indptr.data(), params.m + 1, stream);
update_device(bitmap_d.data(), bitmap_h.data(), element, stream);
}

index_t create_sparse_matrix(index_t m, index_t n, float sparsity, std::vector<bitmap_t>& bitmap)
{
index_t total = static_cast<index_t>(m * n);
index_t num_ones = static_cast<index_t>((total * 1.0f) * sparsity);
index_t res = num_ones;

for (auto& item : bitmap) {
item = static_cast<bitmap_t>(0);
}

std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<index_t> dis(0, total - 1);

while (num_ones > 0) {
index_t index = dis(gen);

bitmap_t& element = bitmap[index / (8 * sizeof(bitmap_t))];
index_t bit_position = index % (8 * sizeof(bitmap_t));

if (((element >> bit_position) & 1) == 0) {
element |= (static_cast<index_t>(1) << bit_position);
num_ones--;
}
}
return res;
}

void cpu_convert_to_csr(std::vector<bitmap_t>& bitmap,
index_t rows,
index_t cols,
std::vector<index_t>& indices,
std::vector<index_t>& indptr)
{
index_t offset_indptr = 0;
index_t offset_values = 0;
indptr[offset_indptr++] = 0;

index_t index = 0;
bitmap_t element = 0;
index_t bit_position = 0;

for (index_t i = 0; i < rows; ++i) {
for (index_t j = 0; j < cols; ++j) {
index = i * cols + j;
element = bitmap[index / (8 * sizeof(bitmap_t))];
bit_position = index % (8 * sizeof(bitmap_t));

if (((element >> bit_position) & 1)) {
indices[offset_values] = static_cast<index_t>(j);
offset_values++;
}
}
indptr[offset_indptr++] = static_cast<index_t>(offset_values);
}
}

~MaskedMatmulBench() {}

void run_benchmark(::benchmark::State& state) override
{
std::ostringstream label_stream;
label_stream << params;
state.SetLabel(label_stream.str());

auto a = raft::make_device_matrix_view<const value_t, index_t, row_major>(
a_data_d.data(), params.m, params.k);

auto b = raft::make_device_matrix_view<const value_t, index_t, row_major>(
b_data_d.data(), params.n, params.k);

auto c_structure = raft::make_device_compressed_structure_view<int64_t, int64_t, int64_t>(
c_indptr_d.data(),
c_indices_d.data(),
params.m,
params.n,
static_cast<index_t>(c_indices_d.size()));

auto mask =
raft::core::bitmap_view<const bitmap_t, index_t>(bitmap_d.data(), params.m, params.n);

auto c = raft::make_device_csr_matrix_view<value_t>(c_data_d.data(), c_structure);

if (params.sparsity < 1.0) {
raft::sparse::linalg::masked_matmul(handle, a, b, mask, c);
} else {
raft::distance::pairwise_distance(handle,
a_data_d.data(),
b_data_d.data(),
c_dense_data_d.data(),
static_cast<int>(params.m),
static_cast<int>(params.n),
static_cast<int>(params.k),
raft::distance::DistanceType::InnerProduct,
true);
}
resource::sync_stream(handle);

raft::sparse::linalg::masked_matmul(handle, a, b, mask, c);
resource::sync_stream(handle);

loop_on_state(state, [this, &a, &b, &mask, &c]() {
if (params.sparsity < 1.0) {
raft::sparse::linalg::masked_matmul(handle, a, b, mask, c);
} else {
raft::distance::pairwise_distance(handle,
a_data_d.data(),
b_data_d.data(),
c_dense_data_d.data(),
static_cast<int>(params.m),
static_cast<int>(params.n),
static_cast<int>(params.k),
raft::distance::DistanceType::InnerProduct,
true);
}
resource::sync_stream(handle);
});
}

private:
const raft::device_resources handle;
MaskedMatmulBenchParams<value_t> params;

rmm::device_uvector<value_t> a_data_d;
rmm::device_uvector<value_t> b_data_d;
rmm::device_uvector<bitmap_t> bitmap_d;

rmm::device_uvector<value_t> c_dense_data_d;

size_t c_true_nnz = 0;
rmm::device_uvector<index_t> c_indptr_d;
rmm::device_uvector<index_t> c_indices_d;
rmm::device_uvector<value_t> c_data_d;
};

template <typename value_t>
static std::vector<MaskedMatmulBenchParams<value_t>> getInputs()
{
std::vector<MaskedMatmulBenchParams<value_t>> param_vec;
struct TestParams {
size_t m;
size_t k;
size_t n;
float sparsity;
};

const std::vector<TestParams> params_group =
raft::util::itertools::product<TestParams>({size_t(10), size_t(1024)},
{size_t(128), size_t(1024)},
{size_t(1024 * 1024)},
{0.01f, 0.1f, 0.2f, 0.5f, 1.0f});

param_vec.reserve(params_group.size());
for (TestParams params : params_group) {
param_vec.push_back(
MaskedMatmulBenchParams<value_t>({params.m, params.k, params.n, params.sparsity}));
}
return param_vec;
}

RAFT_BENCH_REGISTER((MaskedMatmulBench<float>), "", getInputs<float>());

} // namespace raft::bench::linalg
107 changes: 107 additions & 0 deletions cpp/include/raft/sparse/linalg/detail/masked_matmul.cuh
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
/*
* Copyright (c) 2024, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain A copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once

#include <raft/core/bitmap.cuh>
#include <raft/core/detail/popc.cuh>
#include <raft/core/device_csr_matrix.hpp>
#include <raft/core/device_mdarray.hpp>
#include <raft/core/device_mdspan.hpp>
#include <raft/core/host_mdspan.hpp>
#include <raft/core/resource/cuda_stream.hpp>
#include <raft/core/resource/device_memory_resource.hpp>
#include <raft/core/resources.hpp>
#include <raft/sparse/convert/csr.cuh>
#include <raft/sparse/distance/detail/utils.cuh>
#include <raft/sparse/linalg/sddmm.hpp>
#include <raft/util/cuda_utils.cuh>
#include <raft/util/cudart_utils.hpp>

#include <rmm/cuda_device.hpp>
#include <rmm/device_uvector.hpp>

namespace raft {
namespace sparse {
namespace linalg {
namespace detail {

template <typename value_t, typename index_t, typename nnz_t, typename bitmap_t>
void masked_matmul(raft::resources const& handle,
raft::device_matrix_view<const value_t, index_t, raft::row_major>& A,
raft::device_matrix_view<const value_t, index_t, raft::row_major>& B,
raft::core::bitmap_view<const bitmap_t, index_t>& mask,
raft::device_csr_matrix_view<value_t, index_t, index_t, nnz_t>& C,
std::optional<raft::host_scalar_view<value_t>> alpha,
std::optional<raft::host_scalar_view<value_t>> beta)
{
index_t m = A.extent(0);
index_t n = B.extent(0);
index_t dim = A.extent(1);

auto compressed_C_view = C.structure_view();

RAFT_EXPECTS(A.extent(1) == B.extent(1), "The dim of A must be equal to the dim of B.");
RAFT_EXPECTS(A.extent(0) == compressed_C_view.get_n_rows(),
"Number of rows in C must match the number of rows in A.");
RAFT_EXPECTS(B.extent(0) == compressed_C_view.get_n_cols(),
"Number of columns in C must match the number of columns in B.");

auto stream = raft::resource::get_cuda_stream(handle);

auto C_matrix = raft::make_device_csr_matrix<value_t, index_t>(handle, compressed_C_view);

// fill C
raft::sparse::convert::bitmap_to_csr(handle, mask, C_matrix);

if (m > 10 || alpha.has_value() || beta.has_value()) {
auto C_view = raft::make_device_csr_matrix_view<value_t, index_t, index_t, index_t>(
C.get_elements().data(), compressed_C_view);

// create B col_major view
auto B_col_major = raft::make_device_matrix_view<const value_t, index_t, raft::col_major>(
B.data_handle(), dim, n);

value_t default_alpha = static_cast<value_t>(1.0f);
value_t default_beta = static_cast<value_t>(0.0f);

if (!alpha.has_value()) { alpha = raft::make_host_scalar_view<value_t>(&default_alpha); }
if (!beta.has_value()) { beta = raft::make_host_scalar_view<value_t>(&default_beta); }

raft::sparse::linalg::sddmm(handle,
A,
B_col_major,
C_view,
raft::linalg::Operation::NON_TRANSPOSE,
raft::linalg::Operation::NON_TRANSPOSE,
*alpha,
*beta);
} else {
raft::sparse::distance::detail::faster_dot_on_csr(handle,
C.get_elements().data(),
compressed_C_view.get_nnz(),
compressed_C_view.get_indptr().data(),
compressed_C_view.get_indices().data(),
A.data_handle(),
B.data_handle(),
compressed_C_view.get_n_rows(),
dim);
}
}

} // namespace detail
} // namespace linalg
} // namespace sparse
} // namespace raft
Loading
Loading