Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add L2SqrtExpanded support to ivf_flat ANN indices #1133

Merged
merged 7 commits into from
Jan 13, 2023
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 13 additions & 6 deletions cpp/include/raft/neighbors/ivf_flat_types.hpp
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -252,14 +252,21 @@ struct index : ann::index {
* Replace the content of the index with new uninitialized mdarrays to hold the indicated amount
* of data.
*/
void allocate(const handle_t& handle, IdxT index_size, bool allocate_center_norms)
void allocate(const handle_t& handle, IdxT index_size)
{
data_ = make_device_mdarray<T>(handle, make_extents<IdxT>(index_size, dim()));
indices_ = make_device_mdarray<IdxT>(handle, make_extents<IdxT>(index_size));
center_norms_ =
allocate_center_norms
? std::optional(make_device_mdarray<float>(handle, make_extents<uint32_t>(n_lists())))
: std::nullopt;

switch (metric_) {
case raft::distance::DistanceType::L2Expanded:
case raft::distance::DistanceType::L2SqrtExpanded:
case raft::distance::DistanceType::L2Unexpanded:
case raft::distance::DistanceType::L2SqrtUnexpanded:
center_norms_ = make_device_mdarray<float>(handle, make_extents<uint32_t>(n_lists()));
break;
default: center_norms_ = std::nullopt;
}

check_consistency();
}

Expand Down
18 changes: 14 additions & 4 deletions cpp/include/raft/spatial/knn/detail/ann_quantized.cuh
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2021-2022, NVIDIA CORPORATION.
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -94,6 +94,18 @@ void approx_knn_ivfsq_build_index(knnIndex* index, const IVFSQParam& params, Int
index->gpu_res.get(), D, params.nlist, faiss_qtype, faiss_metric, params.encodeResidual));
}

inline bool ivf_flat_supported_metric(raft::distance::DistanceType metric)
{
switch (metric) {
case raft::distance::DistanceType::L2Unexpanded:
case raft::distance::DistanceType::L2Expanded:
case raft::distance::DistanceType::L2SqrtExpanded:
case raft::distance::DistanceType::L2SqrtUnexpanded:
case raft::distance::DistanceType::InnerProduct: return true;
default: return false;
}
}

template <typename T = float, typename IntType = int>
void approx_knn_build_index(const handle_t& handle,
knnIndex* index,
Expand All @@ -120,9 +132,7 @@ void approx_knn_build_index(const handle_t& handle,
}
if constexpr (std::is_same_v<T, float>) { index->metric_processor->preprocess(index_array); }

if (ivf_ft_pams && (metric == raft::distance::DistanceType::L2Unexpanded ||
metric == raft::distance::DistanceType::L2Expanded ||
metric == raft::distance::DistanceType::InnerProduct)) {
if (ivf_ft_pams && ivf_flat_supported_metric(metric)) {
auto new_params = from_legacy_index_params(*ivf_ft_pams, metric, metricArg);
index->ivf_flat<T, int64_t>() = std::make_unique<const ivf_flat::index<T, int64_t>>(
ivf_flat::build(handle, new_params, index_array, int64_t(n), D));
Expand Down
10 changes: 4 additions & 6 deletions cpp/include/raft/spatial/knn/detail/ivf_flat_build.cuh
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -191,8 +191,7 @@ inline auto extend(const handle_t& handle,
update_host(&index_size, list_offsets_ptr + n_lists, 1, stream);
handle.sync_stream(stream);

ext_index.allocate(
handle, index_size, ext_index.metric() == raft::distance::DistanceType::L2Expanded);
ext_index.allocate(handle, index_size);

// Populate index with the old data
if (orig_index.size() > 0) {
Expand Down Expand Up @@ -359,8 +358,7 @@ inline void fill_refinement_index(const handle_t& handle,
stream);

IdxT index_size = n_roundup * n_lists;
refinement_index->allocate(
handle, index_size, refinement_index->metric() == raft::distance::DistanceType::L2Expanded);
refinement_index->allocate(handle, index_size);

RAFT_CUDA_TRY(cudaMemsetAsync(list_sizes_ptr, 0, n_lists * sizeof(uint32_t), stream));

Expand Down Expand Up @@ -454,7 +452,7 @@ auto load(const handle_t& handle, const std::string& filename) -> index<T, IdxT>
index<T, IdxT> index_ =
raft::spatial::knn::ivf_flat::index<T, IdxT>(handle, metric, n_lists, adaptive_centers, dim);

index_.allocate(handle, n_rows, metric == raft::distance::DistanceType::L2Expanded);
index_.allocate(handle, n_rows);
auto data = index_.data();
read_mdspan(handle, infile, data);
read_mdspan(handle, infile, index_.indices());
Expand Down
78 changes: 50 additions & 28 deletions cpp/include/raft/spatial/knn/detail/ivf_flat_search.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -663,9 +663,11 @@ template <int Capacity,
typename T,
typename AccT,
typename IdxT,
typename Lambda>
typename Lambda,
typename PostLambda>
__global__ void __launch_bounds__(kThreadsPerBlock)
interleaved_scan_kernel(Lambda compute_dist,
PostLambda post_process,
const uint32_t query_smem_elems,
const T* query,
const uint32_t* coarse_index,
Expand Down Expand Up @@ -777,7 +779,7 @@ __global__ void __launch_bounds__(kThreadsPerBlock)

// finalize and store selected neighbours
queue.done();
queue.store(distances, neighbors);
queue.store(distances, neighbors, post_process);
}

/**
Expand Down Expand Up @@ -805,8 +807,10 @@ template <int Capacity,
typename T,
typename AccT,
typename IdxT,
typename Lambda>
typename Lambda,
typename PostLambda>
void launch_kernel(Lambda lambda,
PostLambda post_process,
const ivf_flat::index<T, IdxT>& index,
const T* queries,
const uint32_t* coarse_index,
Expand All @@ -821,7 +825,7 @@ void launch_kernel(Lambda lambda,
RAFT_EXPECTS(Veclen == index.veclen(),
"Configured Veclen does not match the index interleaving pattern.");
constexpr auto kKernel =
interleaved_scan_kernel<Capacity, Veclen, Ascending, T, AccT, IdxT, Lambda>;
interleaved_scan_kernel<Capacity, Veclen, Ascending, T, AccT, IdxT, Lambda, PostLambda>;
const int max_query_smem = 16384;
int query_smem_elems =
std::min<int>(max_query_smem / sizeof(T), Pow2<Veclen * WarpSize>::roundUp(index.dim()));
Expand Down Expand Up @@ -851,6 +855,7 @@ void launch_kernel(Lambda lambda,
n_probes,
smem_size);
kKernel<<<grid_dim, block_dim, smem_size, stream>>>(lambda,
post_process,
query_smem_elems,
queries,
coarse_index,
Expand Down Expand Up @@ -941,15 +946,27 @@ void launch_with_fixed_consts(raft::distance::DistanceType metric, Args&&... arg
T,
AccT,
IdxT,
euclidean_dist<Veclen, T, AccT>>({}, std::forward<Args>(args)...);
euclidean_dist<Veclen, T, AccT>,
raft::identity_op>({}, {}, std::forward<Args>(args)...);
case raft::distance::DistanceType::L2SqrtExpanded:
case raft::distance::DistanceType::L2SqrtUnexpanded:
return launch_kernel<Capacity,
Veclen,
Ascending,
T,
AccT,
IdxT,
euclidean_dist<Veclen, T, AccT>,
raft::sqrt_op>({}, {}, std::forward<Args>(args)...);
case raft::distance::DistanceType::InnerProduct:
return launch_kernel<Capacity,
Veclen,
Ascending,
T,
AccT,
IdxT,
inner_prod_dist<Veclen, T, AccT>>({}, std::forward<Args>(args)...);
inner_prod_dist<Veclen, T, AccT>,
raft::identity_op>({}, {}, std::forward<Args>(args)...);
// NB: update the description of `knn::ivf_flat::build` when adding here a new metric.
default: RAFT_FAIL("The chosen distance metric is not supported (%d)", int(metric));
}
Expand Down Expand Up @@ -1105,28 +1122,33 @@ void search_impl(const handle_t& handle,
float beta = 0.0f;

// todo(lsugy): raft distance? (if performance is similar/better than gemm)
if (index.metric() == raft::distance::DistanceType::L2Expanded) {
alpha = -2.0f;
beta = 1.0f;
raft::linalg::rowNorm(query_norm_dev.data(),
converted_queries_ptr,
static_cast<IdxT>(index.dim()),
static_cast<IdxT>(n_queries),
raft::linalg::L2Norm,
true,
stream,
raft::sqrt_op());
utils::outer_add(query_norm_dev.data(),
(IdxT)n_queries,
index.center_norms()->data_handle(),
(IdxT)index.n_lists(),
distance_buffer_dev.data(),
stream);
RAFT_LOG_TRACE_VEC(index.center_norms()->data_handle(), std::min<uint32_t>(20, index.dim()));
RAFT_LOG_TRACE_VEC(distance_buffer_dev.data(), std::min<uint32_t>(20, index.n_lists()));
} else {
alpha = 1.0f;
beta = 0.0f;
switch (index.metric()) {
case raft::distance::DistanceType::L2Expanded:
case raft::distance::DistanceType::L2SqrtExpanded: {
alpha = -2.0f;
beta = 1.0f;
raft::linalg::rowNorm(query_norm_dev.data(),
converted_queries_ptr,
static_cast<IdxT>(index.dim()),
static_cast<IdxT>(n_queries),
raft::linalg::L2Norm,
true,
stream,
raft::sqrt_op());
utils::outer_add(query_norm_dev.data(),
(IdxT)n_queries,
index.center_norms()->data_handle(),
(IdxT)index.n_lists(),
distance_buffer_dev.data(),
stream);
RAFT_LOG_TRACE_VEC(index.center_norms()->data_handle(), std::min<uint32_t>(20, index.dim()));
RAFT_LOG_TRACE_VEC(distance_buffer_dev.data(), std::min<uint32_t>(20, index.n_lists()));
break;
}
default: {
alpha = 1.0f;
beta = 0.0f;
}
}

linalg::gemm(handle,
Expand Down
12 changes: 7 additions & 5 deletions cpp/include/raft/spatial/knn/detail/topk/warpsort_topk.cuh
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -212,12 +212,13 @@ class warp_sort {
* device pointer to a contiguous array, unique per-subwarp of size `kWarpWidth`
* (length: k <= kWarpWidth * kMaxArrLen).
*/
__device__ void store(T* out, IdxT* out_idx) const
template <typename Lambda = raft::identity_op>
__device__ void store(T* out, IdxT* out_idx, Lambda post_process = raft::identity_op()) const
{
int idx = Pow2<kWarpWidth>::mod(laneId());
#pragma unroll kMaxArrLen
for (int i = 0; i < kMaxArrLen && idx < k; i++, idx += kWarpWidth) {
out[idx] = val_arr_[i];
out[idx] = post_process(val_arr_[i]);
out_idx[idx] = idx_arr_[i];
}
}
Expand Down Expand Up @@ -591,9 +592,10 @@ class block_sort {
}

/** Save the content by the pointer location. */
__device__ void store(T* out, IdxT* out_idx) const
template <typename Lambda = raft::identity_op>
__device__ void store(T* out, IdxT* out_idx, Lambda post_process = raft::identity_op()) const
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Just for the record: I'm currently refactoring select_k in #1085 , so I'd need to catch up with these changes there. I'm also planning to change T and IdxT into OutT and OutIdxT to allow saving the results in a type different from the working types T and IdxT.

{
if (threadIdx.x < subwarp_align::Value) { queue_.store(out, out_idx); }
if (threadIdx.x < subwarp_align::Value) { queue_.store(out, out_idx, post_process); }
}

private:
Expand Down
4 changes: 3 additions & 1 deletion cpp/test/neighbors/ann_ivf_flat.cu
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
Expand Down Expand Up @@ -294,6 +294,8 @@ const std::vector<AnnIvfFlatInputs<int64_t>> inputs = {
{1000, 10000, 4, 16, 40, 1024, raft::distance::DistanceType::L2Expanded, false},
{1000, 10000, 5, 16, 40, 1024, raft::distance::DistanceType::InnerProduct, false},
{1000, 10000, 8, 16, 40, 1024, raft::distance::DistanceType::InnerProduct, true},
{1000, 10000, 5, 16, 40, 1024, raft::distance::DistanceType::L2SqrtExpanded, false},
{1000, 10000, 8, 16, 40, 1024, raft::distance::DistanceType::L2SqrtExpanded, true},

// test dims that do not fit into kernel shared memory limits
{1000, 10000, 2048, 16, 40, 1024, raft::distance::DistanceType::L2Expanded, false},
Expand Down