Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rewrite CD solver using more BLAS #4446

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 99 additions & 48 deletions cpp/src/solver/cd.cuh
Original file line number Diff line number Diff line change
Expand Up @@ -22,13 +22,14 @@
#include <functions/penalty.cuh>
#include <functions/softThres.cuh>
#include <glm/preprocess.cuh>
#include <raft/common/nvtx.hpp>
#include <raft/cuda_utils.cuh>
#include <raft/cudart_utils.h>
#include <raft/linalg/add.hpp>
// #TODO: Replace with public header when ready
#include <raft/linalg/detail/cublas_wrappers.hpp>
#include <raft/linalg/axpy.hpp>
#include <raft/linalg/eltwise.hpp>
#include <raft/linalg/gemm.hpp>
#include <raft/linalg/gemv.hpp>
#include <raft/linalg/multiply.hpp>
#include <raft/linalg/subtract.hpp>
#include <raft/linalg/unary_op.hpp>
Expand All @@ -40,8 +41,54 @@ namespace Solver {

using namespace MLCommon;

namespace {

/** Epoch and iteration -related state. */
template <typename math_t>
struct ConvState {
math_t coef;
math_t coefMax;
math_t diffMax;
};

/**
* Fits a linear, lasso, and elastic-net regression model using Coordinate Descent solver
* Update a single CD coefficient and the corresponding convergence criteria.
*
* @param[inout] coefLoc pointer to the coefficient (arr ptr + column index offset)
* @param[in] squaredLoc pointer to the precomputed data - L2 norm of input for across rows
* @param[inout] convStateLoc pointer to the structure holding the convergence state
* @param[in] l1_alpha L1 regularization coef
*/
template <typename math_t>
achirkin marked this conversation as resolved.
Show resolved Hide resolved
__global__ void __launch_bounds__(1, 1) cdUpdateCoefKernel(math_t* coefLoc,
const math_t* squaredLoc,
ConvState<math_t>* convStateLoc,
const math_t l1_alpha)
{
auto coef = *coefLoc;
auto r = coef > l1_alpha ? coef - l1_alpha : (coef < -l1_alpha ? coef + l1_alpha : 0);
auto squared = *squaredLoc;
r = squared > math_t(1e-5) ? r / squared : math_t(0);
auto diff = raft::myAbs(convStateLoc->coef - r);
if (convStateLoc->diffMax < diff) convStateLoc->diffMax = diff;
auto absv = raft::myAbs(r);
if (convStateLoc->coefMax < absv) convStateLoc->coefMax = absv;
convStateLoc->coef = -r;
*coefLoc = r;
}

} // namespace

/**
* Fits a linear, lasso, and elastic-net regression model using Coordinate Descent solver.
*
* i.e. finds coefficients that minimize the following loss function:
*
* f(coef) = 1/2 * || labels - input * coef ||^2
* + 1/2 * alpha * (1 - l1_ratio) * ||coef||^2
* + alpha * l1_ratio * ||coef||_1
*
*
* @param handle
* Reference of raft::handle_t
* @param input
Expand Down Expand Up @@ -96,22 +143,18 @@ void cdFit(const raft::handle_t& handle,
math_t tol,
cudaStream_t stream)
{
raft::common::nvtx::range fun_scope("ML::Solver::cdFit-%d-%d", n_rows, n_cols);
ASSERT(n_cols > 0, "Parameter n_cols: number of columns cannot be less than one");
ASSERT(n_rows > 1, "Parameter n_rows: number of rows cannot be less than two");
ASSERT(loss == ML::loss_funct::SQRD_LOSS,
"Parameter loss: Only SQRT_LOSS function is supported for now");

cublasHandle_t cublas_handle = handle.get_cublas_handle();

rmm::device_uvector<math_t> pred(n_rows, stream);
rmm::device_uvector<math_t> residual(n_rows, stream);
rmm::device_uvector<math_t> squared(n_cols, stream);
rmm::device_uvector<math_t> mu_input(0, stream);
rmm::device_uvector<math_t> mu_labels(0, stream);
rmm::device_uvector<math_t> norm2_input(0, stream);

std::vector<math_t> h_coef(n_cols, math_t(0));

if (fit_intercept) {
mu_input.resize(n_cols, stream);
mu_labels.resize(1, stream);
Expand All @@ -136,9 +179,11 @@ void cdFit(const raft::handle_t& handle,
initShuffle(ri, g);

math_t l2_alpha = (1 - l1_ratio) * alpha * n_rows;
alpha = l1_ratio * alpha * n_rows;
math_t l1_alpha = l1_ratio * alpha * n_rows;

// Precompute the residual
if (normalize) {
// if we normalized the data during preprocessing, no need to compute the norm again.
math_t scalar = math_t(1.0) + l2_alpha;
raft::matrix::setValue(squared.data(), squared.data(), scalar, n_cols, stream);
} else {
Expand All @@ -149,57 +194,63 @@ void cdFit(const raft::handle_t& handle,

raft::copy(residual.data(), labels, n_rows, stream);

ConvState<math_t> h_convState;
rmm::device_uvector<ConvState<math_t>> convStateBuf(1, stream);
auto convStateLoc = convStateBuf.data();

rmm::device_scalar<math_t> cublas_alpha(1.0, stream);
rmm::device_scalar<math_t> cublas_beta(0.0, stream);

achirkin marked this conversation as resolved.
Show resolved Hide resolved
for (int i = 0; i < epochs; i++) {
raft::common::nvtx::range epoch_scope("ML::Solver::cdFit::epoch-%d", i);
if (i > 0 && shuffle) { Solver::shuffle(ri, g); }

math_t coef_max = 0.0;
math_t d_coef_max = 0.0;
math_t coef_prev = 0.0;
RAFT_CUDA_TRY(cudaMemsetAsync(convStateLoc, 0, sizeof(ConvState<math_t>), stream));

for (int j = 0; j < n_cols; j++) {
raft::common::nvtx::range iter_scope("ML::Solver::cdFit::col-%d", j);
int ci = ri[j];
math_t* coef_loc = coef + ci;
math_t* squared_loc = squared.data() + ci;
math_t* input_col_loc = input + (ci * n_rows);

raft::linalg::multiplyScalar(pred.data(), input_col_loc, h_coef[ci], n_rows, stream);
raft::linalg::add(residual.data(), residual.data(), pred.data(), n_rows, stream);
raft::linalg::gemm(handle,
input_col_loc,
n_rows,
1,
residual.data(),
coef_loc,
1,
1,
CUBLAS_OP_T,
CUBLAS_OP_N,
stream);

if (l1_ratio > math_t(0.0)) Functions::softThres(coef_loc, coef_loc, alpha, 1, stream);

raft::linalg::eltwiseDivideCheckZero(coef_loc, coef_loc, squared_loc, 1, stream);

coef_prev = h_coef[ci];
raft::update_host(&(h_coef[ci]), coef_loc, 1, stream);
handle.sync_stream(stream);

math_t diff = abs(coef_prev - h_coef[ci]);

if (diff > d_coef_max) d_coef_max = diff;

if (abs(h_coef[ci]) > coef_max) coef_max = abs(h_coef[ci]);

raft::linalg::multiplyScalar(pred.data(), input_col_loc, h_coef[ci], n_rows, stream);
raft::linalg::subtract(residual.data(), residual.data(), pred.data(), n_rows, stream);
// remember current coef
raft::copy(&(convStateLoc->coef), coef_loc, 1, stream);
achirkin marked this conversation as resolved.
Show resolved Hide resolved
// calculate the residual without the contribution from column ci
// residual[:] += coef[ci] * X[:, ci]
raft::linalg::axpy<math_t, true>(
handle, n_rows, coef_loc, input_col_loc, 1, residual.data(), 1, stream);

// coef[ci] = dot(X[:, ci], residual[:])
raft::linalg::gemv<math_t, true>(handle,
achirkin marked this conversation as resolved.
Show resolved Hide resolved
false,
1,
n_rows,
cublas_alpha.data(),
input_col_loc,
1,
residual.data(),
1,
cublas_beta.data(),
coef_loc,
1,
stream);

// Calculate the new coefficient that minimizes f along coordinate line ci
// coef[ci] = SoftTreshold(dot(X[:, ci], residual[:]), l1_alpha) / dot(X[:, ci], X[:, ci]))
// Also, update the convergence criteria.
cdUpdateCoefKernel<math_t><<<dim3(1, 1, 1), dim3(1, 1, 1), 0, stream>>>(
achirkin marked this conversation as resolved.
Show resolved Hide resolved
coef_loc, squared_loc, convStateLoc, l1_alpha);
RAFT_CUDA_TRY(cudaGetLastError());

// Restore the residual using the updated coeffecient
raft::linalg::axpy<math_t, true>(
achirkin marked this conversation as resolved.
Show resolved Hide resolved
handle, n_rows, &(convStateLoc->coef), input_col_loc, 1, residual.data(), 1, stream);
}
raft::update_host(&h_convState, convStateLoc, 1, stream);
handle.sync_stream(stream);

bool flag_continue = true;
if (coef_max == math_t(0)) { flag_continue = false; }

if ((d_coef_max / coef_max) < tol) { flag_continue = false; }

if (!flag_continue) { break; }
if (h_convState.coefMax < tol || (h_convState.diffMax / h_convState.coefMax) < tol) break;
}

if (fit_intercept) {
Expand Down