Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove unused functionality in cudf._lib.utils.pyx #17586

Merged
merged 1 commit into from
Dec 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 0 additions & 16 deletions python/cudf/cudf/_lib/utils.pxd
Original file line number Diff line number Diff line change
@@ -1,22 +1,6 @@
# Copyright (c) 2020-2024, NVIDIA CORPORATION.

from libcpp.memory cimport unique_ptr
from libcpp.string cimport string
from libcpp.vector cimport vector

from pylibcudf.libcudf.column.column cimport column_view
from pylibcudf.libcudf.table.table cimport table, table_view


cdef data_from_unique_ptr(
unique_ptr[table] c_tbl, column_names, index_names=*)
cpdef data_from_pylibcudf_table(tbl, column_names, index_names=*)
cpdef data_from_pylibcudf_io(tbl_with_meta, column_names = *, index_names = *)
cdef data_from_table_view(
table_view tv, object owner, object column_names, object index_names=*)
cdef table_view table_view_from_columns(columns) except *
cdef table_view table_view_from_table(tbl, ignore_index=*) except*
cdef columns_from_unique_ptr(unique_ptr[table] c_tbl)
cdef columns_from_table_view(table_view tv, object owners)
cpdef columns_from_pylibcudf_table(tbl)
cpdef _data_from_columns(columns, column_names, index_names=*)
309 changes: 1 addition & 308 deletions python/cudf/cudf/_lib/utils.pyx
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

If everything left is for pylibcudf interop, there may be a more descriptive name than “utils.” Feel free to punt on this.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks. I think, if anything, the remaining used functions will be moved to cudf/utils/ioutils.py so I'll punt on the intermediate rename

Original file line number Diff line number Diff line change
@@ -1,233 +1,7 @@
# Copyright (c) 2020-2024, NVIDIA CORPORATION.

import numpy as np
import pyarrow as pa

import cudf

from cython.operator cimport dereference
from libcpp.memory cimport unique_ptr
from libcpp.utility cimport move
from libcpp.vector cimport vector

from pylibcudf.libcudf.column.column cimport column, column_view
from pylibcudf.libcudf.table.table cimport table
from pylibcudf.libcudf.table.table_view cimport table_view
from pylibcudf.libcudf.types cimport size_type

from cudf._lib.column cimport Column
from pylibcudf cimport Column as plc_Column
try:
import ujson as json
except ImportError:
import json

from cudf.utils.dtypes import np_dtypes_to_pandas_dtypes, np_to_pa_dtype

PARQUET_META_TYPE_MAP = {
str(cudf_dtype): str(pandas_dtype)
for cudf_dtype, pandas_dtype in np_dtypes_to_pandas_dtypes.items()
}

cdef table_view table_view_from_columns(columns) except*:
"""Create a cudf::table_view from an iterable of Columns."""
cdef vector[column_view] column_views

cdef Column col
for col in columns:
column_views.push_back(col.view())

return table_view(column_views)


cdef table_view table_view_from_table(tbl, ignore_index=False) except*:
"""Create a cudf::table_view from a Table.

Parameters
----------
ignore_index : bool, default False
If True, don't include the index in the columns.
"""
return table_view_from_columns(
tbl._index._columns + tbl._columns
if not ignore_index and tbl._index is not None
else tbl._columns
)


cpdef generate_pandas_metadata(table, index):
col_names = []
types = []
index_levels = []
index_descriptors = []
columns_to_convert = list(table._columns)
# Columns
for name, col in table._column_labels_and_values:
if cudf.get_option("mode.pandas_compatible"):
# in pandas-compat mode, non-string column names are stringified.
col_names.append(str(name))
else:
col_names.append(name)

if isinstance(col.dtype, cudf.CategoricalDtype):
raise ValueError(
"'category' column dtypes are currently not "
+ "supported by the gpu accelerated parquet writer"
)
elif isinstance(col.dtype, (
cudf.ListDtype,
cudf.StructDtype,
cudf.core.dtypes.DecimalDtype
)):
types.append(col.dtype.to_arrow())
else:
# A boolean element takes 8 bits in cudf and 1 bit in
# pyarrow. To make sure the cudf format is interperable
# in arrow, we use `int8` type when converting from a
# cudf boolean array.
if col.dtype.type == np.bool_:
types.append(pa.int8())
else:
types.append(np_to_pa_dtype(col.dtype))

# Indexes
materialize_index = False
if index is not False:
for level, name in enumerate(table._index.names):
if isinstance(table._index, cudf.MultiIndex):
idx = table.index.get_level_values(level)
else:
idx = table.index

if isinstance(idx, cudf.RangeIndex):
if index is None:
descr = {
"kind": "range",
"name": table.index.name,
"start": table.index.start,
"stop": table.index.stop,
"step": table.index.step,
}
else:
materialize_index = True
# When `index=True`, RangeIndex needs to be materialized.
materialized_idx = idx._as_int_index()
descr = _index_level_name(
index_name=materialized_idx.name,
level=level,
column_names=col_names
)
index_levels.append(materialized_idx)
columns_to_convert.append(materialized_idx._values)
col_names.append(descr)
types.append(np_to_pa_dtype(materialized_idx.dtype))
else:
descr = _index_level_name(
index_name=idx.name,
level=level,
column_names=col_names
)
columns_to_convert.append(idx._values)
col_names.append(descr)
if isinstance(idx.dtype, cudf.CategoricalDtype):
raise ValueError(
"'category' column dtypes are currently not "
+ "supported by the gpu accelerated parquet writer"
)
elif isinstance(idx.dtype, cudf.ListDtype):
types.append(col.dtype.to_arrow())
else:
# A boolean element takes 8 bits in cudf and 1 bit in
# pyarrow. To make sure the cudf format is interperable
# in arrow, we use `int8` type when converting from a
# cudf boolean array.
if idx.dtype.type == np.bool_:
types.append(pa.int8())
else:
types.append(np_to_pa_dtype(idx.dtype))

index_levels.append(idx)
index_descriptors.append(descr)

df_meta = table.head(0)
if materialize_index:
df_meta.index = df_meta.index._as_int_index()
metadata = pa.pandas_compat.construct_metadata(
columns_to_convert=columns_to_convert,
# It is OKAY to do `.head(0).to_pandas()` because
# this method will extract `.columns` metadata only
df=df_meta.to_pandas(),
column_names=col_names,
index_levels=index_levels,
index_descriptors=index_descriptors,
preserve_index=index,
types=types,
)

md_dict = json.loads(metadata[b"pandas"])

# correct metadata for list and struct and nullable numeric types
for col_meta in md_dict["columns"]:
if (
col_meta["name"] in table._column_names
and table._data[col_meta["name"]].nullable
and col_meta["numpy_type"] in PARQUET_META_TYPE_MAP
and col_meta["pandas_type"] != "decimal"
):
col_meta["numpy_type"] = PARQUET_META_TYPE_MAP[
col_meta["numpy_type"]
]
if col_meta["numpy_type"] in ("list", "struct"):
col_meta["numpy_type"] = "object"

return json.dumps(md_dict)


def _index_level_name(index_name, level, column_names):
"""
Return the name of an index level or a default name
if `index_name` is None or is already a column name.

Parameters
----------
index_name : name of an Index object
level : level of the Index object

Returns
-------
name : str
"""
if index_name is not None and index_name not in column_names:
return index_name
else:
return f"__index_level_{level}__"


cdef columns_from_unique_ptr(
unique_ptr[table] c_tbl
):
"""Convert a libcudf table into list of columns.

Parameters
----------
c_tbl : unique_ptr[cudf::table]
The libcudf table whose columns will be extracted

Returns
-------
list[Column]
A list of columns.
"""
cdef vector[unique_ptr[column]] c_columns = move(c_tbl.get().release())
cdef vector[unique_ptr[column]].iterator it = c_columns.begin()

cdef size_t i

return [
Column.from_pylibcudf(
plc_Column.from_libcudf(move(dereference(it+i)))
) for i in range(c_columns.size())
]


cpdef columns_from_pylibcudf_table(tbl):
Expand Down Expand Up @@ -281,8 +55,7 @@ cpdef _data_from_columns(columns, column_names, index_names=None):
# the data while actually constructing the Index object here (instead
# of just returning a dict for that as well). As we clean up the
# Frame factories we may want to look for a less dissonant approach
# that does not impose performance penalties. The same applies to
# data_from_table_view below.
# that does not impose performance penalties.
cudf.core.index._index_from_data(
{
name: columns[i]
Expand All @@ -300,16 +73,6 @@ cpdef _data_from_columns(columns, column_names, index_names=None):
return data, index


cdef data_from_unique_ptr(
unique_ptr[table] c_tbl, column_names, index_names=None
):
return _data_from_columns(
columns_from_unique_ptr(move(c_tbl)),
column_names,
index_names
)


cpdef data_from_pylibcudf_table(tbl, column_names, index_names=None):
return _data_from_columns(
columns_from_pylibcudf_table(tbl),
Expand All @@ -329,73 +92,3 @@ cpdef data_from_pylibcudf_io(tbl_with_meta, column_names=None, index_names=None)
column_names=column_names,
index_names=index_names
)

cdef columns_from_table_view(
table_view tv,
object owners,
):
"""
Given a ``cudf::table_view``, constructs a list of columns from it,
along with referencing an owner Python object that owns the memory
lifetime. owner must be either None or a list of column. If owner
is a list of columns, the owner of the `i`th ``cudf::column_view``
in the table view is ``owners[i]``. For more about memory ownership,
see ``Column.from_column_view``.
"""

return [
Column.from_column_view(
tv.column(i), owners[i] if isinstance(owners, list) else None
) for i in range(tv.num_columns())
]

cdef data_from_table_view(
table_view tv,
object owner,
object column_names,
object index_names=None
):
"""
Given a ``cudf::table_view``, constructs a Frame from it,
along with referencing an ``owner`` Python object that owns the memory
lifetime. If ``owner`` is a Frame we reach inside of it and
reach inside of each ``cudf.Column`` to make the owner of each newly
created ``Buffer`` underneath the ``cudf.Column`` objects of the
created Frame the respective ``Buffer`` from the relevant
``cudf.Column`` of the ``owner`` Frame
"""
cdef size_type column_idx = 0
table_owner = isinstance(owner, cudf.core.frame.Frame)

# First construct the index, if any
index = None
if index_names is not None:
index_columns = []
for _ in index_names:
column_owner = owner
if table_owner:
column_owner = owner._index._columns[column_idx]
index_columns.append(
Column.from_column_view(
tv.column(column_idx),
column_owner
)
)
column_idx += 1
index = cudf.core.index._index_from_data(
dict(zip(index_names, index_columns)))

# Construct the data dict
cdef size_type source_column_idx = 0
data_columns = []
for _ in column_names:
column_owner = owner
if table_owner:
column_owner = owner._columns[source_column_idx]
data_columns.append(
Column.from_column_view(tv.column(column_idx), column_owner)
)
column_idx += 1
source_column_idx += 1

return dict(zip(column_names, data_columns)), index
Loading
Loading