Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support pivot with index or column arguments as lists #17373

Merged
merged 3 commits into from
Nov 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 44 additions & 16 deletions python/cudf/cudf/core/reshape.py
Original file line number Diff line number Diff line change
Expand Up @@ -961,7 +961,11 @@ def _merge_sorted(
)


def _pivot(col_accessor: ColumnAccessor, index, columns) -> cudf.DataFrame:
def _pivot(
col_accessor: ColumnAccessor,
index: cudf.Index | cudf.MultiIndex,
columns: cudf.Index | cudf.MultiIndex,
) -> cudf.DataFrame:
"""
Reorganize the values of the DataFrame according to the given
index and columns.
Expand Down Expand Up @@ -1012,12 +1016,12 @@ def as_tuple(x):
level_names=(None,) + columns._column_names,
verify=False,
)
return cudf.DataFrame._from_data(
ca, index=cudf.Index(index_labels, name=index.name)
)
return cudf.DataFrame._from_data(ca, index=index_labels)


def pivot(data, columns=None, index=no_default, values=no_default):
def pivot(
data: cudf.DataFrame, columns=None, index=no_default, values=no_default
) -> cudf.DataFrame:
"""
Return reshaped DataFrame organized by the given index and column values.

Expand All @@ -1027,10 +1031,10 @@ def pivot(data, columns=None, index=no_default, values=no_default):

Parameters
----------
columns : column name, optional
Column used to construct the columns of the result.
index : column name, optional
Column used to construct the index of the result.
columns : scalar or list of scalars, optional
Column label(s) used to construct the columns of the result.
index : scalar or list of scalars, optional
Column label(s) used to construct the index of the result.
values : column name or list of column names, optional
Column(s) whose values are rearranged to produce the result.
If not specified, all remaining columns of the DataFrame
Expand Down Expand Up @@ -1069,24 +1073,46 @@ def pivot(data, columns=None, index=no_default, values=no_default):
"""
values_is_list = True
if values is no_default:
already_selected = set(
itertools.chain(
[index] if is_scalar(index) else index,
[columns] if is_scalar(columns) else columns,
)
)
cols_to_select = [
col for col in data._column_names if col not in (index, columns)
col for col in data._column_names if col not in already_selected
]
elif not isinstance(values, (list, tuple)):
cols_to_select = [values]
values_is_list = False
else:
cols_to_select = values
cols_to_select = values # type: ignore[assignment]
if index is no_default:
index = data.index
index_data = data.index
else:
index = cudf.Index(data.loc[:, index])
columns = cudf.Index(data.loc[:, columns])
index_data = data.loc[:, index]
if index_data.ndim == 2:
index_data = cudf.MultiIndex.from_frame(index_data)
if not is_scalar(index) and len(index) == 1:
# pandas converts single level MultiIndex to Index
index_data = index_data.get_level_values(0)
else:
index_data = cudf.Index(index_data)

column_data = data.loc[:, columns]
if column_data.ndim == 2:
column_data = cudf.MultiIndex.from_frame(column_data)
else:
column_data = cudf.Index(column_data)

# Create a DataFrame composed of columns from both
# columns and index
ca = ColumnAccessor(
dict(enumerate(itertools.chain(index._columns, columns._columns))),
dict(
enumerate(
itertools.chain(index_data._columns, column_data._columns)
)
),
verify=False,
)
columns_index = cudf.DataFrame._from_data(ca)
Expand All @@ -1095,7 +1121,9 @@ def pivot(data, columns=None, index=no_default, values=no_default):
if len(columns_index) != len(columns_index.drop_duplicates()):
raise ValueError("Duplicate index-column pairs found. Cannot reshape.")

result = _pivot(data._data.select_by_label(cols_to_select), index, columns)
result = _pivot(
data._data.select_by_label(cols_to_select), index_data, column_data
)

# MultiIndex to Index
if not values_is_list:
Expand Down
17 changes: 17 additions & 0 deletions python/cudf/cudf/tests/test_reshape.py
Original file line number Diff line number Diff line change
Expand Up @@ -835,3 +835,20 @@ def test_crosstab_simple():
expected = pd.crosstab(a, [b, c], rownames=["a"], colnames=["b", "c"])
actual = cudf.crosstab(a, [b, c], rownames=["a"], colnames=["b", "c"])
assert_eq(expected, actual, check_dtype=False)


@pytest.mark.parametrize("index", [["ix"], ["ix", "foo"]])
@pytest.mark.parametrize("columns", [["col"], ["col", "baz"]])
def test_pivot_list_like_index_columns(index, columns):
data = {
"bar": ["x", "y", "z", "w"],
"col": ["a", "b", "a", "b"],
"foo": [1, 2, 3, 4],
"ix": [1, 1, 2, 2],
"baz": [0, 0, 0, 0],
}
pd_df = pd.DataFrame(data)
cudf_df = cudf.DataFrame(data)
result = cudf_df.pivot(columns=columns, index=index)
expected = pd_df.pivot(columns=columns, index=index)
assert_eq(result, expected)
Loading