Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make Frame._dtype an iterator instead of a dict #15920

Merged
merged 3 commits into from
Jun 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions python/cudf/cudf/core/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -1231,7 +1231,7 @@ def dtypes(self):
string object
dtype: object
"""
return pd.Series(self._dtypes, dtype="object")
return pd.Series(dict(self._dtypes), dtype="object")

@property
def ndim(self) -> int:
Expand Down Expand Up @@ -2836,7 +2836,7 @@ def reindex(

return df._reindex(
column_names=columns,
dtypes=self._dtypes,
dtypes=dict(self._dtypes),
deep=copy,
index=index,
inplace=False,
Expand Down
16 changes: 7 additions & 9 deletions python/cudf/cudf/core/frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,18 +79,16 @@ def _num_rows(self) -> int:
return self._data.nrows

@property
def _column_names(self) -> Tuple[Any, ...]: # TODO: Tuple[str]?
return tuple(self._data.names)
def _column_names(self) -> Tuple[Any, ...]:
return self._data.names

@property
def _columns(self) -> Tuple[Any, ...]: # TODO: Tuple[Column]?
return tuple(self._data.columns)
def _columns(self) -> Tuple[ColumnBase, ...]:
return self._data.columns

@property
def _dtypes(self):
return dict(
zip(self._data.names, (col.dtype for col in self._data.columns))
)
def _dtypes(self) -> abc.Iterator:
return zip(self._data.names, (col.dtype for col in self._data.columns))

@property
def ndim(self) -> int:
Expand Down Expand Up @@ -1969,7 +1967,7 @@ def __dask_tokenize__(self):

return [
type(self),
str(self._dtypes),
str(dict(self._dtypes)),
normalize_token(self.to_pandas()),
]

Expand Down
16 changes: 3 additions & 13 deletions python/cudf/cudf/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,12 +22,7 @@
from cudf._lib.types import size_type_dtype
from cudf._typing import AggType, DataFrameOrSeries, MultiColumnAggType
from cudf.api.extensions import no_default
from cudf.api.types import (
is_bool_dtype,
is_float_dtype,
is_list_like,
is_numeric_dtype,
)
from cudf.api.types import is_bool_dtype, is_list_like, is_numeric_dtype
from cudf.core._compat import PANDAS_LT_300
from cudf.core.abc import Serializable
from cudf.core.column.column import ColumnBase, StructDtype, as_column
Expand Down Expand Up @@ -335,12 +330,8 @@ def dtypes(self):
FutureWarning,
)
index = self.grouping.keys.unique().sort_values().to_pandas()
obj_dtypes = self.obj._dtypes
return pd.DataFrame(
{
name: [obj_dtypes[name]] * len(index)
for name in self.obj._data.names
},
{name: [dtype] * len(index) for name, dtype in self.obj._dtypes},
index=index,
)

Expand Down Expand Up @@ -499,8 +490,7 @@ def rank(
# treats NaNs the way we treat nulls.
if cudf.get_option("mode.pandas_compatible"):
if any(
is_float_dtype(typ)
for typ in self.grouping.values._dtypes.values()
col.dtype.kind == "f" for col in self.grouping.values._columns
):
raise NotImplementedError(
"NaNs are not supported in groupby.rank."
Expand Down
10 changes: 5 additions & 5 deletions python/cudf/cudf/core/indexed_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -891,7 +891,7 @@ def replace(
) = _get_replacement_values_for_columns(
to_replace=to_replace,
value=value,
columns_dtype_map=self._dtypes,
columns_dtype_map=dict(self._dtypes),
)

for name, col in self._data.items():
Expand Down Expand Up @@ -6313,11 +6313,11 @@ def __dask_tokenize__(self):

return [
type(self),
str(self._dtypes),
str(dict(self._dtypes)),
*[
normalize_token(cat.categories)
for cat in self._dtypes.values()
if cat == "category"
normalize_token(col.dtype.categories)
for col in self._columns
if col.dtype == "category"
],
normalize_token(self.index),
normalize_token(self.hash_values().values_host),
Expand Down
5 changes: 2 additions & 3 deletions python/cudf/cudf/io/csv.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,10 +132,9 @@ def read_csv(
# There exists some dtypes in the result columns that is inferred.
# Find them and map them to the default dtypes.
specified_dtypes = {} if dtype is None else dtype
df_dtypes = df._dtypes
unspecified_dtypes = {
name: df_dtypes[name]
for name in df._column_names
name: dtype
for name, dtype in df._dtypes
if name not in specified_dtypes
}
default_dtypes = {}
Expand Down
5 changes: 2 additions & 3 deletions python/cudf/cudf/io/json.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,10 +147,9 @@ def read_json(
# There exists some dtypes in the result columns that is inferred.
# Find them and map them to the default dtypes.
specified_dtypes = {} if dtype is True else dtype
df_dtypes = df._dtypes
unspecified_dtypes = {
name: df_dtypes[name]
for name in df._column_names
name: dtype
for name, dtype in df._dtypes
if name not in specified_dtypes
}
default_dtypes = {}
Expand Down
Loading