Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use isinstance(..., cudf.CategoricalDtype) instead of is_categorical_dtype #14423

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions python/cudf/cudf/core/_internals/where.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,10 @@
from cudf.api.types import (
_is_non_decimal_numeric_dtype,
is_bool_dtype,
is_categorical_dtype,
is_scalar,
)
from cudf.core.column import ColumnBase
from cudf.core.dtypes import CategoricalDtype
from cudf.utils.dtypes import (
_can_cast,
_dtype_can_hold_element,
Expand Down Expand Up @@ -46,7 +46,7 @@ def _check_and_cast_columns_with_other(
) -> Tuple[ColumnBase, Union[ScalarLike, ColumnBase]]:
# Returns type-casted `source_col` & `other` based on `inplace`.
source_dtype = source_col.dtype
if is_categorical_dtype(source_dtype):
if isinstance(source_dtype, CategoricalDtype):
return _normalize_categorical(source_col, other)

other_is_scalar = is_scalar(other)
Expand Down
4 changes: 2 additions & 2 deletions python/cudf/cudf/core/column/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
from cudf import _lib as libcudf
from cudf._lib.transform import bools_to_mask
from cudf._typing import ColumnBinaryOperand, ColumnLike, Dtype, ScalarLike
from cudf.api.types import is_categorical_dtype, is_interval_dtype
from cudf.api.types import is_interval_dtype
from cudf.core.buffer import Buffer
from cudf.core.column import column
from cudf.core.column.methods import ColumnMethods
Expand Down Expand Up @@ -99,7 +99,7 @@ class CategoricalAccessor(ColumnMethods):
_column: CategoricalColumn

def __init__(self, parent: SeriesOrSingleColumnIndex):
if not is_categorical_dtype(parent.dtype):
if not isinstance(parent.dtype, CategoricalDtype):
raise AttributeError(
"Can only use .cat accessor with a 'category' dtype"
)
Expand Down
2 changes: 1 addition & 1 deletion python/cudf/cudf/core/column/column.py
Original file line number Diff line number Diff line change
Expand Up @@ -2815,7 +2815,7 @@ def concat_columns(objs: "MutableSequence[ColumnBase]") -> ColumnBase:
# ColumnBase._concat so that all subclasses can override necessary
# behavior. However, at the moment it's not clear what that API should look
# like, so CategoricalColumn simply implements a minimal working API.
if all(is_categorical_dtype(o.dtype) for o in objs):
if all(isinstance(o.dtype, CategoricalDtype) for o in objs):
return cudf.core.column.categorical.CategoricalColumn._concat(
cast(
MutableSequence[
Expand Down
6 changes: 3 additions & 3 deletions python/cudf/cudf/core/column/interval.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@
import pyarrow as pa

import cudf
from cudf.api.types import is_categorical_dtype, is_interval_dtype
from cudf.api.types import is_interval_dtype
from cudf.core.column import StructColumn
from cudf.core.dtypes import IntervalDtype
from cudf.core.dtypes import CategoricalDtype, IntervalDtype


class IntervalColumn(StructColumn):
Expand Down Expand Up @@ -102,7 +102,7 @@ def copy(self, deep=True):

def as_interval_column(self, dtype, **kwargs):
if is_interval_dtype(dtype):
if is_categorical_dtype(self):
if isinstance(self.dtype, CategoricalDtype):
new_struct = self._get_decategorized_column()
return IntervalColumn.from_struct_column(new_struct)
if is_interval_dtype(dtype):
Expand Down
30 changes: 18 additions & 12 deletions python/cudf/cudf/core/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,6 @@
from cudf.api.types import (
_is_scalar_or_zero_d_array,
is_bool_dtype,
is_categorical_dtype,
is_datetime_dtype,
is_dict_like,
is_dtype_equal,
Expand Down Expand Up @@ -319,7 +318,9 @@ def _getitem_tuple_arg(self, arg):
as_column(
tmp_arg[0],
dtype=self._frame.index.dtype
if is_categorical_dtype(self._frame.index.dtype)
if isinstance(
self._frame.index.dtype, cudf.CategoricalDtype
)
else None,
),
tmp_arg[1],
Expand Down Expand Up @@ -1497,7 +1498,7 @@ def _get_numeric_data(self):
columns = [
c
for c, dt in self.dtypes.items()
if dt != object and not is_categorical_dtype(dt)
if dt != object and not isinstance(dt, cudf.CategoricalDtype)
]
return self[columns]

Expand Down Expand Up @@ -1740,8 +1741,8 @@ def _concat(
out._index._data,
indices[:first_data_column_position],
)
if not isinstance(out._index, MultiIndex) and is_categorical_dtype(
out._index._values.dtype
if not isinstance(out._index, MultiIndex) and isinstance(
out._index._values.dtype, cudf.CategoricalDtype
):
out = out.set_index(
cudf.core.index.as_index(out.index._values)
Expand Down Expand Up @@ -3893,8 +3894,11 @@ def transpose(self):
# No column from index is transposed with libcudf.
source_columns = [*self._columns]
source_dtype = source_columns[0].dtype
if is_categorical_dtype(source_dtype):
if any(not is_categorical_dtype(c.dtype) for c in source_columns):
if isinstance(source_dtype, cudf.CategoricalDtype):
if any(
not isinstance(c.dtype, cudf.CategoricalDtype)
for c in source_columns
):
raise ValueError("Columns must all have the same dtype")
cats = list(c.categories for c in source_columns)
cats = cudf.core.column.concat_columns(cats).unique()
Expand All @@ -3908,7 +3912,7 @@ def transpose(self):

result_columns = libcudf.transpose.transpose(source_columns)

if is_categorical_dtype(source_dtype):
if isinstance(source_dtype, cudf.CategoricalDtype):
result_columns = [
codes._with_type_metadata(
cudf.core.dtypes.CategoricalDtype(categories=cats)
Expand Down Expand Up @@ -4610,8 +4614,8 @@ def apply_rows(
"""
for col in incols:
current_col_dtype = self._data[col].dtype
if is_string_dtype(current_col_dtype) or is_categorical_dtype(
current_col_dtype
if is_string_dtype(current_col_dtype) or isinstance(
current_col_dtype, cudf.CategoricalDtype
):
raise TypeError(
"User defined functions are currently not "
Expand Down Expand Up @@ -6438,7 +6442,8 @@ def select_dtypes(self, include=None, exclude=None):
for dtype in self.dtypes:
for i_dtype in include:
# category handling
if is_categorical_dtype(i_dtype):
if i_dtype == cudf.CategoricalDtype:
# Matches cudf & pandas dtype objects
include_subtypes.add(i_dtype)
elif inspect.isclass(dtype.type):
if issubclass(dtype.type, i_dtype):
Expand All @@ -6449,7 +6454,8 @@ def select_dtypes(self, include=None, exclude=None):
for dtype in self.dtypes:
for e_dtype in exclude:
# category handling
if is_categorical_dtype(e_dtype):
if e_dtype == cudf.CategoricalDtype:
# Matches cudf & pandas dtype objects
exclude_subtypes.add(e_dtype)
elif inspect.isclass(dtype.type):
if issubclass(dtype.type, e_dtype):
Expand Down
3 changes: 1 addition & 2 deletions python/cudf/cudf/core/index.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,6 @@
from cudf.api.extensions import no_default
from cudf.api.types import (
_is_non_decimal_numeric_dtype,
is_categorical_dtype,
is_dtype_equal,
is_integer,
is_interval_dtype,
Expand Down Expand Up @@ -2972,7 +2971,7 @@ def __init__(
if isinstance(data, CategoricalColumn):
data = data
elif isinstance(data, pd.Series) and (
is_categorical_dtype(data.dtype)
isinstance(data.dtype, pd.CategoricalDtype)
):
codes_data = column.as_column(data.cat.codes.values)
data = column.build_categorical_column(
Expand Down
15 changes: 7 additions & 8 deletions python/cudf/cudf/core/indexed_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,6 @@
from cudf.api.types import (
_is_non_decimal_numeric_dtype,
is_bool_dtype,
is_categorical_dtype,
is_decimal_dtype,
is_dict_like,
is_list_dtype,
Expand Down Expand Up @@ -171,7 +170,7 @@ def _indices_from_labels(obj, labels):
if not isinstance(labels, cudf.MultiIndex):
labels = cudf.core.column.as_column(labels)

if is_categorical_dtype(obj.index):
if isinstance(obj.index.dtype, cudf.CategoricalDtype):
labels = labels.astype("category")
codes = labels.codes.astype(obj.index._values.codes.dtype)
labels = cudf.core.column.build_categorical_column(
Expand Down Expand Up @@ -5455,21 +5454,21 @@ def _is_same_dtype(lhs_dtype, rhs_dtype):
if lhs_dtype == rhs_dtype:
return True
elif (
is_categorical_dtype(lhs_dtype)
and is_categorical_dtype(rhs_dtype)
isinstance(lhs_dtype, cudf.CategoricalDtype)
and isinstance(rhs_dtype, cudf.CategoricalDtype)
and lhs_dtype.categories.dtype == rhs_dtype.categories.dtype
):
# OK if categories are not all the same
return True
elif (
is_categorical_dtype(lhs_dtype)
and not is_categorical_dtype(rhs_dtype)
isinstance(lhs_dtype, cudf.CategoricalDtype)
and not isinstance(rhs_dtype, cudf.CategoricalDtype)
and lhs_dtype.categories.dtype == rhs_dtype
):
return True
elif (
is_categorical_dtype(rhs_dtype)
and not is_categorical_dtype(lhs_dtype)
isinstance(rhs_dtype, cudf.CategoricalDtype)
and not isinstance(lhs_dtype, cudf.CategoricalDtype)
and rhs_dtype.categories.dtype == lhs_dtype
):
return True
Expand Down
2 changes: 1 addition & 1 deletion python/cudf/cudf/core/reshape.py
Original file line number Diff line number Diff line change
Expand Up @@ -541,7 +541,7 @@ def melt(

# Error for unimplemented support for datatype
dtypes = [frame[col].dtype for col in id_vars + value_vars]
if any(cudf.api.types.is_categorical_dtype(t) for t in dtypes):
if any(isinstance(typ, cudf.CategoricalDtype) for typ in dtypes):
raise NotImplementedError(
"Categorical columns are not yet supported for function"
)
Expand Down
6 changes: 3 additions & 3 deletions python/cudf/cudf/core/tools/numeric.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (c) 2018-2022, NVIDIA CORPORATION.
# Copyright (c) 2018-2023, NVIDIA CORPORATION.

import warnings

Expand All @@ -10,14 +10,14 @@
from cudf._lib import strings as libstrings
from cudf.api.types import (
_is_non_decimal_numeric_dtype,
is_categorical_dtype,
is_datetime_dtype,
is_list_dtype,
is_string_dtype,
is_struct_dtype,
is_timedelta_dtype,
)
from cudf.core.column import as_column
from cudf.core.dtypes import CategoricalDtype
from cudf.utils.dtypes import can_convert_to_column


Expand Down Expand Up @@ -110,7 +110,7 @@ def to_numeric(arg, errors="raise", downcast=None):

if is_datetime_dtype(dtype) or is_timedelta_dtype(dtype):
col = col.as_numerical_column(cudf.dtype("int64"))
elif is_categorical_dtype(dtype):
elif isinstance(dtype, CategoricalDtype):
cat_dtype = col.dtype.type
if _is_non_decimal_numeric_dtype(cat_dtype):
col = col.as_numerical_column(cat_dtype)
Expand Down
4 changes: 3 additions & 1 deletion python/cudf/cudf/tests/test_dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -6067,7 +6067,9 @@ def test_df_sr_mask_where(data, condition, other, error, inplace):
expect_mask = ps_mask
got_mask = gs_mask

if pd.api.types.is_categorical_dtype(expect_where):
if isinstance(expect_where, pd.Series) and isinstance(
expect_where.dtype, pd.CategoricalDtype
):
np.testing.assert_array_equal(
expect_where.cat.codes,
got_where.cat.codes.astype(expect_where.cat.codes.dtype)
Expand Down
2 changes: 1 addition & 1 deletion python/cudf/cudf/tests/test_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -682,7 +682,7 @@ def test_index_where(data, condition, other, error):
gs_other = other

if error is None:
if pd.api.types.is_categorical_dtype(ps):
if isinstance(ps.dtype, pd.CategoricalDtype):
expect = ps.where(ps_condition, other=ps_other)
got = gs.where(gs_condition, other=gs_other)
np.testing.assert_array_equal(
Expand Down
Loading