Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add scalar argtypes to udf cache keys #13194

Merged
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion python/cudf/cudf/core/udf/groupby_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,7 @@ def jit_groupby_apply(offsets, grouped_values, function, *args):
ngroups = len(offsets) - 1

cache_key = _generate_cache_key(
grouped_values, function, suffix="__GROUPBY_APPLY_UDF"
grouped_values, function, args, suffix="__GROUPBY_APPLY_UDF"
)

if cache_key not in precompiled:
Expand Down
9 changes: 7 additions & 2 deletions python/cudf/cudf/core/udf/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
column_from_udf_string_array,
column_to_string_view_array,
)
from cudf.api.types import is_scalar
from cudf.core.column.column import as_column
from cudf.core.dtypes import dtype
from cudf.core.udf.masked_typing import MaskedType
Expand Down Expand Up @@ -245,20 +246,22 @@ def _mask_get(mask, pos):
return (mask[pos // MASK_BITSIZE] >> (pos % MASK_BITSIZE)) & 1


def _generate_cache_key(frame, func: Callable, suffix="__APPLY_UDF"):
def _generate_cache_key(frame, func: Callable, args, suffix="__APPLY_UDF"):
"""Create a cache key that uniquely identifies a compilation.

A new compilation is needed any time any of the following things change:
- The UDF itself as defined in python by the user
- The types of the columns utilized by the UDF
- The existence of the input columns masks
"""
scalar_argtypes = tuple(typeof(arg) for arg in args)
return (
*cudautils.make_cache_key(
func, tuple(_all_dtypes_from_frame(frame).values())
),
*(col.mask is None for col in frame._data.values()),
*frame._data.keys(),
scalar_argtypes,
suffix,
)

Expand All @@ -285,9 +288,11 @@ def _compile_or_get(frame, func, args, kernel_getter=None):
we then obtain the return type from that separate compilation and
use it to allocate an output column of the right dtype.
"""
if not all(is_scalar(arg) for arg in args):
raise TypeError("only scalar valued args are supported by apply")

# check to see if we already compiled this function
cache_key = _generate_cache_key(frame, func)
cache_key = _generate_cache_key(frame, func, args)
if precompiled.get(cache_key) is not None:
kernel, masked_or_scalar = precompiled[cache_key]
return kernel, masked_or_scalar
Expand Down
13 changes: 13 additions & 0 deletions python/cudf/cudf/tests/test_udf_masked_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -775,6 +775,19 @@ def f(x):

assert precompiled.currsize == 1

# validate that changing the type of a scalar arg
# results in a miss
precompiled.clear()

def f(x, c):
return x + c

data.apply(f, args=(1,))
assert precompiled.currsize == 1

data.apply(f, args=(1.5,))
assert precompiled.currsize == 2


@pytest.mark.parametrize(
"data", [[1.0, 0.0, 1.5], [1, 0, 2], [True, False, True]]
Expand Down