Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[BUG] Reading back chunked parquet file fails #7011

Closed
rjzamora opened this issue Dec 15, 2020 · 10 comments · Fixed by #10000
Closed

[BUG] Reading back chunked parquet file fails #7011

rjzamora opened this issue Dec 15, 2020 · 10 comments · Fixed by #10000
Labels
bug Something isn't working cuIO cuIO issue Python Affects Python cuDF API.

Comments

@rjzamora
Copy link
Member

rjzamora commented Dec 15, 2020

Describe the bug
Using cudf-0.16, NVTabular uses cudf.io.parquet.ParquetWriter to iteratively write out a parquet file to a BytesIO object as data is processed, and then later reads back the final "file" into device memory (the intention being to pre-emptively "spill" data to host memory without relying on Dask-CUDA). This approach fails for cudf>=0.17, unless the inital ParquetWriter object is initialized with index=False.

The main problem seems to be in the final cudf.read_parquet call, becuase everything works fine if that call is replaced with pd.read_parquet. However, the parquet "file" does include incomplete index information in the pandas metadata. So, there is also a problem in the write phase.

Steps/Code to reproduce bug

import cudf
from cudf.io.parquet import ParquetWriter as pwriter
from io import BytesIO

index = None  #  Only works if index == False

# Create a dataframe
df = cudf.DataFrame({"a":range(4)})

# Create a ParquetWriter object with BytesIO sink
bio = BytesIO()
writer = pwriter(bio, compression=None, index=index)

# Write parquet file in multiple "chunks"
writer.write_table(df.iloc[0:2])
writer.write_table(df.iloc[2:4])
writer.close()

# Read back final file
cudf.io.read_parquet(bio, index=False, use_pandas_metadata=False)
Output Traceback
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-1-4f5ec159a7eb> in <module>
     18 
     19 # Read back final file
---> 20 cudf.io.read_parquet(bio, index=False, use_pandas_metadata=False)

~/workspace/cudf_18/cudf/python/cudf/cudf/io/parquet.py in read_parquet(filepath_or_buffer, engine, columns, filters, row_groups, skiprows, num_rows, strings_to_categorical, use_pandas_metadata, *args, **kwargs)
    256             num_rows=num_rows,
    257             strings_to_categorical=strings_to_categorical,
--> 258             use_pandas_metadata=use_pandas_metadata,
    259         )
    260     else:

~/workspace/cudf_18/cudf/python/cudf/cudf/_lib/parquet.pyx in cudf._lib.parquet.read_parquet()

~/workspace/cudf_18/cudf/python/cudf/cudf/_lib/parquet.pyx in cudf._lib.parquet.read_parquet()

~/workspace/cudf_18/cudf/python/cudf/cudf/core/dataframe.py in __setattr__(self, key, col)
    607         try:
    608             object.__getattribute__(self, key)
--> 609             object.__setattr__(self, key, col)
    610             return
    611         except AttributeError:

~/workspace/cudf_18/cudf/python/cudf/cudf/core/dataframe.py in index(self, value)
   2521                 f"new values have {new_length} elements"
   2522             )
-> 2523             raise ValueError(msg)
   2524 
   2525         # try to build an index from generic _index

ValueError: Length mismatch: Expected axis has 4 elements, new values have 2 elements

I believe that part of the problem is that the final BytesIO object contains "pandas metadata" that specifies a RangeIndex that does not match the number of rows in the parquet file. Within the bytes returned by bio.getvalue(), I see:

"index_columns": [{"kind": "range", "name": null, "start": 0, "stop": 2, "step": 1}]

This suggests that the pandas metadata was not updated when the second chunk was added to the file, and explains the Length mismatch error. However, it is not clear why this metadata would matter if we are spefiying both index=False and use_pandas_metadata=False in read_parquet. Note that, even with this "bad" metadata, the pandas version of read_parquet returns the correct result.

Expected behavior

I would expect:

  1. The file written by ParquetWriter to include complete "pandas metadata"
  2. cudf.read_parquet to ignore the pandas metadata if it is "bad," and especially if use_pandas_metadata==False

Environment overview (please complete the following information)

  • Environment location: Bare-metal
  • Method of cuDF install: conda

Environment details

Click here to see environment details
 **git***
 Not inside a git repository
 
 ***OS Information***
 DGX_NAME="DGX Server"
 DGX_PRETTY_NAME="NVIDIA DGX Server"
 DGX_SWBUILD_DATE="2020-03-04"
 DGX_SWBUILD_VERSION="4.4.0"
 DGX_COMMIT_ID="ee09ebc"
 DGX_PLATFORM="DGX Server for DGX-1"
 DGX_SERIAL_NUMBER="QTFCOU8220024"
 DISTRIB_ID=Ubuntu
 DISTRIB_RELEASE=18.04
 DISTRIB_CODENAME=bionic
 DISTRIB_DESCRIPTION="Ubuntu 18.04.4 LTS"
 NAME="Ubuntu"
 VERSION="18.04.4 LTS (Bionic Beaver)"
 ID=ubuntu
 ID_LIKE=debian
 PRETTY_NAME="Ubuntu 18.04.4 LTS"
 VERSION_ID="18.04"
 HOME_URL="https://www.ubuntu.com/"
 SUPPORT_URL="https://help.ubuntu.com/"
 BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
 PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
 VERSION_CODENAME=bionic
 UBUNTU_CODENAME=bionic
 Linux dgx14 4.15.0-76-generic #86-Ubuntu SMP Fri Jan 17 17:24:28 UTC 2020 x86_64 x86_64 x86_64 GNU/Linux
 
 ***GPU Information***
 Mon Dec 14 19:23:47 2020
 +-----------------------------------------------------------------------------+
 | NVIDIA-SMI 440.64.00    Driver Version: 440.64.00    CUDA Version: 10.2     |
 |-------------------------------+----------------------+----------------------+
 | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
 | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
 |===============================+======================+======================|
 |   0  Tesla V100-SXM2...  On   | 00000000:06:00.0 Off |                    0 |
 | N/A   32C    P0    57W / 300W |   3520MiB / 32510MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   1  Tesla V100-SXM2...  On   | 00000000:07:00.0 Off |                    0 |
 | N/A   32C    P0    41W / 300W |     12MiB / 32510MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   2  Tesla V100-SXM2...  On   | 00000000:0A:00.0 Off |                    0 |
 | N/A   30C    P0    43W / 300W |     12MiB / 32510MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   3  Tesla V100-SXM2...  On   | 00000000:0B:00.0 Off |                    0 |
 | N/A   29C    P0    42W / 300W |     12MiB / 32510MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   4  Tesla V100-SXM2...  On   | 00000000:85:00.0 Off |                    0 |
 | N/A   30C    P0    43W / 300W |     12MiB / 32510MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   5  Tesla V100-SXM2...  On   | 00000000:86:00.0 Off |                    0 |
 | N/A   30C    P0    42W / 300W |     12MiB / 32510MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   6  Tesla V100-SXM2...  On   | 00000000:89:00.0 Off |                    0 |
 | N/A   32C    P0    43W / 300W |     12MiB / 32510MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 |   7  Tesla V100-SXM2...  On   | 00000000:8A:00.0 Off |                    0 |
 | N/A   28C    P0    43W / 300W |     12MiB / 32510MiB |      0%      Default |
 +-------------------------------+----------------------+----------------------+
 
 +-----------------------------------------------------------------------------+
 | Processes:                                                       GPU Memory |
 |  GPU       PID   Type   Process name                             Usage      |
 |=============================================================================|
 |    0     26853      C   ...mora/miniconda3/envs/cudf_17/bin/python   877MiB |
 |    0     60788      C   ...mora/miniconda3/envs/cudf_17/bin/python   879MiB |
 |    0     60907      C   ...mora/miniconda3/envs/cudf_17/bin/python   875MiB |
 |    0     60911      C   ...mora/miniconda3/envs/cudf_17/bin/python   875MiB |
 +-----------------------------------------------------------------------------+
 
 ***CPU***
 Architecture:        x86_64
 CPU op-mode(s):      32-bit, 64-bit
 Byte Order:          Little Endian
 CPU(s):              80
 On-line CPU(s) list: 0-79
 Thread(s) per core:  2
 Core(s) per socket:  20
 Socket(s):           2
 NUMA node(s):        2
 Vendor ID:           GenuineIntel
 CPU family:          6
 Model:               79
 Model name:          Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
 Stepping:            1
 CPU MHz:             3403.288
 CPU max MHz:         3600.0000
 CPU min MHz:         1200.0000
 BogoMIPS:            4390.13
 Virtualization:      VT-x
 L1d cache:           32K
 L1i cache:           32K
 L2 cache:            256K
 L3 cache:            51200K
 NUMA node0 CPU(s):   0-19,40-59
 NUMA node1 CPU(s):   20-39,60-79
 Flags:               fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single pti intel_ppin ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a rdseed adx smap intel_pt xsaveopt cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts md_clear flush_l1d
 
 ***CMake***
 /datasets/rzamora/miniconda3/envs/cudf_18/bin/cmake
 cmake version 3.19.1
 
 CMake suite maintained and supported by Kitware (kitware.com/cmake).
 
 ***g++***
 /usr/bin/g++
 g++ (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
 Copyright (C) 2017 Free Software Foundation, Inc.
 This is free software; see the source for copying conditions.  There is NO
 warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 
 
 ***nvcc***
 /usr/local/cuda/bin/nvcc
 nvcc: NVIDIA (R) Cuda compiler driver
 Copyright (c) 2005-2019 NVIDIA Corporation
 Built on Wed_Oct_23_19:24:38_PDT_2019
 Cuda compilation tools, release 10.2, V10.2.89
 
 ***Python***
 /datasets/rzamora/miniconda3/envs/cudf_18/bin/python
 Python 3.7.9
 
 ***Environment Variables***
 PATH                            : /home/nfs/rzamora/.vscode-server/bin/940b5f4bb5fa47866a54529ed759d95d09ee80be/bin:/home/nfs/rzamora/bin:/home/nfs/rzamora/.local/bin:/datasets/rzamora/miniconda3/envs/cudf_18/bin:/datasets/rzamora/miniconda3/condabin:/usr/local/cuda/bin:/opt/bin:/home/nfs/rzamora/.vscode-server/bin/940b5f4bb5fa47866a54529ed759d95d09ee80be/bin:/home/nfs/rzamora/bin:/home/nfs/rzamora/.local/bin:/usr/local/cuda/bin:/opt/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
 LD_LIBRARY_PATH                 :
 NUMBAPRO_NVVM                   :
 NUMBAPRO_LIBDEVICE              :
 CONDA_PREFIX                    : /datasets/rzamora/miniconda3/envs/cudf_18
 PYTHON_PATH                     :
 
 ***conda packages***
 /datasets/rzamora/miniconda3/condabin/conda
 # packages in environment at /datasets/rzamora/miniconda3/envs/cudf_18:
 #
 # Name                    Version                   Build  Channel
 _libgcc_mutex             0.1                 conda_forge    conda-forge
 _openmp_mutex             4.5                       1_gnu    conda-forge
 abseil-cpp                20200225.2           he1b5a44_2    conda-forge
 alabaster                 0.7.12                     py_0    conda-forge
 appdirs                   1.4.4              pyh9f0ad1d_0    conda-forge
 argon2-cffi               20.1.0           py37h4abf009_2    conda-forge
 arrow-cpp                 1.0.1           py37h9631afc_16_cuda    conda-forge
 arrow-cpp-proc            2.0.0                      cuda    conda-forge
 async_generator           1.10                       py_0    conda-forge
 attrs                     20.3.0             pyhd3deb0d_0    conda-forge
 aws-c-common              0.4.59               h36c2ea0_1    conda-forge
 aws-c-event-stream        0.1.6                had2084c_6    conda-forge
 aws-checksums             0.1.10               h4e93380_0    conda-forge
 aws-sdk-cpp               1.8.70               h57dc084_1    conda-forge
 babel                     2.9.0              pyhd3deb0d_0    conda-forge
 backcall                  0.2.0              pyh9f0ad1d_0    conda-forge
 backports                 1.0                        py_2    conda-forge
 backports.functools_lru_cache 1.6.1                      py_0    conda-forge
 black                     19.10b0                    py_4    conda-forge
 bleach                    3.2.1              pyh9f0ad1d_0    conda-forge
 bokeh                     2.2.3            py37h89c1867_0    conda-forge
 boost-cpp                 1.74.0               h9d3c048_1    conda-forge
 brotli                    1.0.9                he1b5a44_3    conda-forge
 brotlipy                  0.7.0           py37hb5d75c8_1001    conda-forge
 bzip2                     1.0.8                h7f98852_4    conda-forge
 c-ares                    1.17.1               h36c2ea0_0    conda-forge
 ca-certificates           2020.12.5            ha878542_0    conda-forge
 certifi                   2020.12.5        py37h89c1867_0    conda-forge
 cffi                      1.14.4           py37hc58025e_1    conda-forge
 cfgv                      3.2.0                      py_0    conda-forge
 chardet                   3.0.4           py37he5f6b98_1008    conda-forge
 clang                     8.0.1                hc9558a2_2    conda-forge
 clang-tools               8.0.1                hc9558a2_2    conda-forge
 clangxx                   8.0.1                         2    conda-forge
 click                     7.1.2              pyh9f0ad1d_0    conda-forge
 cloudpickle               1.6.0                      py_0    conda-forge
 cmake                     3.19.1               h1f3970d_0    conda-forge
 cmake_setuptools          0.1.3                      py_0    rapidsai
 colorama                  0.4.4              pyh9f0ad1d_0    conda-forge
 commonmark                0.9.1                      py_0    conda-forge
 cryptography              3.3.1            py37h7f0c10b_0    conda-forge
 cudatoolkit               10.2.89              h6bb024c_0    nvidia
 cudf                      0.18.0a0+83.gf965d9acae          pypi_0    pypi
 cudnn                     7.6.5                cuda10.2_0
 cupy                      8.1.0            py37hd81ff16_0    conda-forge
 cython                    0.29.21          py37hb892b2f_1    conda-forge
 cytoolz                   0.11.0           py37h4abf009_1    conda-forge
 dask                      2020.12.0+6.g1d669480          pypi_0    pypi
 dask-cudf                 0.18.0a0+108.ga5515f2152           dev_0    <develop>
 decorator                 4.4.2                      py_0    conda-forge
 defusedxml                0.6.0                      py_0    conda-forge
 distlib                   0.3.1              pyh9f0ad1d_0    conda-forge
 distributed               2.31.0.dev0+95.gc6d6fff1          pypi_0    pypi
 dlpack                    0.3                  he1b5a44_1    conda-forge
 docutils                  0.16             py37he5f6b98_2    conda-forge
 double-conversion         3.1.5                he1b5a44_2    conda-forge
 editdistance              0.5.3            py37hcd2ae1e_2    conda-forge
 entrypoints               0.3             pyhd8ed1ab_1003    conda-forge
 expat                     2.2.9                he1b5a44_2    conda-forge
 fastavro                  1.2.1            py37h5e8e339_0    conda-forge
 fastrlock                 0.5              py37h3340039_1    conda-forge
 filelock                  3.0.12             pyh9f0ad1d_0    conda-forge
 flake8                    3.8.3                      py_1    conda-forge
 flatbuffers               1.12.0               h58526e2_0    conda-forge
 freetype                  2.10.4               h7ca028e_0    conda-forge
 fsspec                    0.8.4                      py_0    conda-forge
 future                    0.18.2           py37h89c1867_2    conda-forge
 gflags                    2.2.2             he1b5a44_1004    conda-forge
 glog                      0.4.0                h49b9bf7_3    conda-forge
 gmp                       6.2.1                h58526e2_0    conda-forge
 grpc-cpp                  1.33.2               h1870a98_1    conda-forge
 heapdict                  1.0.1                      py_0    conda-forge
 hypothesis                5.43.2             pyhd8ed1ab_0    conda-forge
 icu                       68.1                 h58526e2_0    conda-forge
 identify                  1.5.10             pyhd3deb0d_0    conda-forge
 idna                      2.10               pyh9f0ad1d_0    conda-forge
 imagesize                 1.2.0                      py_0    conda-forge
 importlib-metadata        2.0.0                      py_1    conda-forge
 importlib_metadata        2.0.0                         1    conda-forge
 iniconfig                 1.1.1              pyh9f0ad1d_0    conda-forge
 ipykernel                 5.3.4            py37h888b3d9_1    conda-forge
 ipython                   7.19.0           py37h888b3d9_0    conda-forge
 ipython_genutils          0.2.0                      py_1    conda-forge
 isort                     5.0.7            py37hc8dfbb8_0    conda-forge
 jedi                      0.17.2           py37h89c1867_1    conda-forge
 jinja2                    2.11.2             pyh9f0ad1d_0    conda-forge
 jpeg                      9d                   h36c2ea0_0    conda-forge
 jsonschema                3.2.0                      py_2    conda-forge
 jupyter_client            6.1.7                      py_0    conda-forge
 jupyter_core              4.7.0            py37h89c1867_0    conda-forge
 jupyterlab_pygments       0.1.2              pyh9f0ad1d_0    conda-forge
 krb5                      1.17.2               h926e7f8_0    conda-forge
 lcms2                     2.11                 hcbb858e_1    conda-forge
 ld_impl_linux-64          2.35.1               hed1e6ac_0    conda-forge
 libblas                   3.9.0                3_openblas    conda-forge
 libcblas                  3.9.0                3_openblas    conda-forge
 libcurl                   7.71.1               hcdd3856_8    conda-forge
 libedit                   3.1.20191231         he28a2e2_2    conda-forge
 libev                     4.33                 h516909a_1    conda-forge
 libevent                  2.1.10               hcdb4288_3    conda-forge
 libffi                    3.3                  h58526e2_2    conda-forge
 libgcc-ng                 9.3.0               h5dbcf3e_17    conda-forge
 libgfortran-ng            9.3.0               he4bcb1c_17    conda-forge
 libgfortran5              9.3.0               he4bcb1c_17    conda-forge
 libgomp                   9.3.0               h5dbcf3e_17    conda-forge
 liblapack                 3.9.0                3_openblas    conda-forge
 libllvm10                 10.0.1               he513fc3_3    conda-forge
 libllvm8                  8.0.1                hc9558a2_0    conda-forge
 libnghttp2                1.41.0               h8cfc5f6_2    conda-forge
 libopenblas               0.3.12          pthreads_h4812303_1    conda-forge
 libpng                    1.6.37               h21135ba_2    conda-forge
 libprotobuf               3.13.0.1             h8b12597_0    conda-forge
 librmm                    0.18.0a201210   cuda10.2_gaf10710_15    rapidsai-nightly
 libsodium                 1.0.18               h36c2ea0_1    conda-forge
 libssh2                   1.9.0                hab1572f_5    conda-forge
 libstdcxx-ng              9.3.0               h2ae2ef3_17    conda-forge
 libthrift                 0.13.0               h5aa387f_6    conda-forge
 libtiff                   4.1.0                h4f3a223_6    conda-forge
 libutf8proc               2.6.0                h36c2ea0_0    conda-forge
 libuv                     1.40.0               hd18ef5c_0    conda-forge
 libwebp-base              1.1.0                h36c2ea0_3    conda-forge
 llvmlite                  0.35.0           py37h9d7f4d0_0    conda-forge
 locket                    0.2.0                      py_2    conda-forge
 lz4-c                     1.9.2                he1b5a44_3    conda-forge
 markdown                  3.3.3              pyh9f0ad1d_0    conda-forge
 markupsafe                1.1.1            py37hb5d75c8_2    conda-forge
 mccabe                    0.6.1                      py_1    conda-forge
 mimesis                   4.0.0              pyh9f0ad1d_0    conda-forge
 mistune                   0.8.4           py37h4abf009_1002    conda-forge
 more-itertools            8.6.0              pyhd8ed1ab_0    conda-forge
 msgpack-python            1.0.0            py37hc928c03_2    conda-forge
 nbclient                  0.5.1                      py_0    conda-forge
 nbconvert                 6.0.7            py37h89c1867_3    conda-forge
 nbformat                  5.0.8                      py_0    conda-forge
 nbsphinx                  0.7.1              pyh9f0ad1d_0    conda-forge
 nccl                      2.8.3.1              h1a5f58c_0    conda-forge
 ncurses                   6.2                  h58526e2_4    conda-forge
 nest-asyncio              1.4.3              pyhd8ed1ab_0    conda-forge
 nodeenv                   1.5.0              pyh9f0ad1d_0    conda-forge
 notebook                  6.1.5            py37h89c1867_0    conda-forge
 numba                     0.52.0           py37hdc94413_0    conda-forge
 numpy                     1.19.4           py37h7e9df27_1    conda-forge
 numpydoc                  1.1.0                      py_1    conda-forge
 nvtx                      0.2.1            py37h8f50634_2    conda-forge
 olefile                   0.46               pyh9f0ad1d_1    conda-forge
 openssl                   1.1.1h               h516909a_0    conda-forge
 orc                       1.6.5                hd3605a7_0    conda-forge
 packaging                 20.7               pyhd3deb0d_0    conda-forge
 pandas                    1.1.5            py37hdc94413_0    conda-forge
 pandoc                    1.19.2                        0    conda-forge
 pandocfilters             1.4.2                      py_1    conda-forge
 parquet-cpp               1.5.1                         2    conda-forge
 parso                     0.7.1              pyh9f0ad1d_0    conda-forge
 partd                     1.1.0                      py_0    conda-forge
 pathspec                  0.8.1              pyhd3deb0d_0    conda-forge
 pexpect                   4.8.0              pyh9f0ad1d_2    conda-forge
 pickleshare               0.7.5                   py_1003    conda-forge
 pillow                    8.0.1            py37h63a5d19_0    conda-forge
 pip                       20.3.1             pyhd8ed1ab_0    conda-forge
 pluggy                    0.13.1           py37he5f6b98_3    conda-forge
 pre-commit                2.9.3            py37h89c1867_0    conda-forge
 pre_commit                2.9.3                hd8ed1ab_0    conda-forge
 prometheus_client         0.9.0              pyhd3deb0d_0    conda-forge
 prompt-toolkit            3.0.8              pyha770c72_0    conda-forge
 protobuf                  3.13.0.1         py37h745909e_1    conda-forge
 psutil                    5.7.3            py37hb5d75c8_0    conda-forge
 ptyprocess                0.6.0                   py_1001    conda-forge
 py                        1.9.0              pyh9f0ad1d_0    conda-forge
 py-cpuinfo                7.0.0              pyh9f0ad1d_0    conda-forge
 pyarrow                   1.0.1           py37hbeecfa9_16_cuda    conda-forge
 pycodestyle               2.6.0              pyh9f0ad1d_0    conda-forge
 pycparser                 2.20               pyh9f0ad1d_2    conda-forge
 pyflakes                  2.2.0              pyh9f0ad1d_0    conda-forge
 pygments                  2.7.3              pyhd8ed1ab_0    conda-forge
 pyopenssl                 20.0.0             pyhd8ed1ab_0    conda-forge
 pyparsing                 2.4.7              pyh9f0ad1d_0    conda-forge
 pyrsistent                0.17.3           py37h4abf009_1    conda-forge
 pysocks                   1.7.1            py37he5f6b98_2    conda-forge
 pytest                    6.1.2            py37h89c1867_0    conda-forge
 pytest-benchmark          3.2.3              pyh9f0ad1d_0    conda-forge
 python                    3.7.9           hffdb5ce_0_cpython    conda-forge
 python-dateutil           2.8.1                      py_0    conda-forge
 python_abi                3.7                     1_cp37m    conda-forge
 pytz                      2020.4             pyhd8ed1ab_0    conda-forge
 pyyaml                    5.3.1            py37hb5d75c8_1    conda-forge
 pyzmq                     20.0.0           py37h5a562af_1    conda-forge
 rapidjson                 1.1.0             he1b5a44_1002    conda-forge
 re2                       2020.11.01           h58526e2_0    conda-forge
 readline                  8.0                  he28a2e2_2    conda-forge
 recommonmark              0.6.0                      py_0    conda-forge
 regex                     2020.11.13       py37h4abf009_0    conda-forge
 requests                  2.25.0             pyhd3deb0d_0    conda-forge
 rhash                     1.3.6             h516909a_1001    conda-forge
 rmm                       0.18.0a201210   cuda_10.2_py37_gaf10710_15    rapidsai-nightly
 send2trash                1.5.0                      py_0    conda-forge
 setuptools                49.6.0           py37he5f6b98_2    conda-forge
 six                       1.15.0             pyh9f0ad1d_0    conda-forge
 snappy                    1.1.8                he1b5a44_3    conda-forge
 snowballstemmer           2.0.0                      py_0    conda-forge
 sortedcontainers          2.3.0              pyhd8ed1ab_0    conda-forge
 spdlog                    1.7.0                hc9558a2_2    conda-forge
 sphinx                    3.3.1              pyhd8ed1ab_1    conda-forge
 sphinx-copybutton         0.3.1              pyhd8ed1ab_0    conda-forge
 sphinx-markdown-tables    0.0.14             pyh9f0ad1d_1    conda-forge
 sphinx_rtd_theme          0.5.0              pyh9f0ad1d_0    conda-forge
 sphinxcontrib-applehelp   1.0.2                      py_0    conda-forge
 sphinxcontrib-devhelp     1.0.2                      py_0    conda-forge
 sphinxcontrib-htmlhelp    1.0.3                      py_0    conda-forge
 sphinxcontrib-jsmath      1.0.1                      py_0    conda-forge
 sphinxcontrib-qthelp      1.0.3                      py_0    conda-forge
 sphinxcontrib-serializinghtml 1.1.4                      py_0    conda-forge
 sphinxcontrib-websupport  1.2.4              pyh9f0ad1d_0    conda-forge
 sqlite                    3.34.0               h74cdb3f_0    conda-forge
 streamz                   0.6.1              pyhd3deb0d_1    conda-forge
 tblib                     1.6.0                      py_0    conda-forge
 terminado                 0.9.1            py37h89c1867_1    conda-forge
 testpath                  0.4.4                      py_0    conda-forge
 tk                        8.6.10               hed695b0_1    conda-forge
 toml                      0.10.2             pyhd8ed1ab_0    conda-forge
 toolz                     0.11.1                     py_0    conda-forge
 tornado                   6.1              py37h4abf009_0    conda-forge
 traitlets                 5.0.5                      py_0    conda-forge
 typed-ast                 1.4.1            py37h4abf009_1    conda-forge
 typing_extensions         3.7.4.3                    py_0    conda-forge
 urllib3                   1.25.11                    py_0    conda-forge
 virtualenv                20.2.2           py37h89c1867_0    conda-forge
 wcwidth                   0.2.5              pyh9f0ad1d_2    conda-forge
 webencodings              0.5.1                      py_1    conda-forge
 wheel                     0.36.1             pyhd3deb0d_0    conda-forge
 xz                        5.2.5                h516909a_1    conda-forge
 yaml                      0.2.5                h516909a_0    conda-forge
 zeromq                    4.3.3                h58526e2_3    conda-forge
 zict                      2.0.0                      py_0    conda-forge
 zipp                      3.4.0                      py_0    conda-forge
 zlib                      1.2.11            h516909a_1010    conda-forge
 zstd                      1.4.5                h6597ccf_2    conda-forge

Additional context
cc @albert17

@rjzamora rjzamora added bug Something isn't working Needs Triage Need team to review and classify labels Dec 15, 2020
@rjzamora rjzamora added the cuIO cuIO issue label Dec 15, 2020
@devavret
Copy link
Contributor

As for the writer, the issue is in how the ParquetWriter class handles writing the pandas metadata. It generates the metadata upon the first call to write_table() and therefore the index is fixed as the one used for the first table. This parquet metadata generation could be moved to the close() call because that's when it is written out but I can't guess how to merge the index across all the write_table() calls. I'll take a look at the reader next.

@rjzamora
Copy link
Member Author

It may be fair to leave the index information out of the pandas metadata for the ParquetWriter class if it is a RangIndex. This type of index is rarely needed by the user - especially if it is an "un-named" RangeIndex.

It may also make sense to leave ParquetWriter as is, and implement the "fix" in the cudf reader. It seems that the pandas reader can handle a RangeIndex with the wrong length in cases like this. so, hopefully cudf can as well.

@kkraus14 kkraus14 added Python Affects Python cuDF API. and removed Needs Triage Need team to review and classify labels Dec 24, 2020
@devavret
Copy link
Contributor

devavret commented Dec 28, 2020

  1. cudf.read_parquet to ignore the pandas metadata if it is "bad," and especially if use_pandas_metadata==False

It's a simple fix to ignore pandas metadata when use_pandas_metadata==False. Try this patch:
ignore_pandas_meta.txt.

  1. The file written by ParquetWriter to include complete "pandas metadata"

Fixing this is going to involve moving around the code to generate pandas metadata and passing the final metadata to the state, as detailed in my previous comment.

However, it is not clear why this metadata would matter if we are spefiying both index=False and use_pandas_metadata=False in read_parquet.

BTW, index=False doesn't seem to be an argument in pandas' read_parquet. It's a writer argument.

@rjzamora
Copy link
Member Author

rjzamora commented Jan 6, 2021

It's a simple fix to ignore pandas metadata when use_pandas_metadata==False. Try this patch:
ignore_pandas_meta.txt.

Great! An ideal fix would automatically ignore the pandas metadata if that metadata contains a RangeIndex and the size of that index does not agree with the number of rows in the data. However, I would consider the "full" fix a much lower priority than a functional use_pandas_metadata=False argument.

Fixing this is going to involve moving around the code to generate pandas metadata and passing the final metadata to the state, as detailed in my previous comment.

It is probably rare for a user to actually need a RangeIndex to be preserved in practice. The more common situation is that the RangeIndex is just "accidentally" preserved in the metadata. Therefore, I do not think a write-side fix needs to be prioritized here if it is a pain.

BTW, index=False doesn't seem to be an argument in pandas' read_parquet. It's a writer argument.

Oops - Good point. I thought the pyarrow engine was using this kwarg on the backend, but I was wrong.

@devavret
Copy link
Contributor

While trying to "Fix" this, and while writing tests, I found that pyarrow doesn't work as expected when specifying use_pandas_metadata=False. It restored the non-standard RangeIndex.

In [1]: import cudf
In [2]: import pandas as pd
In [3]:     df = pd.DataFrame(
   ...:         {
   ...:             "a": range(6, 9),
   ...:             "b": range(3, 6),
   ...:             "c": range(6, 9),
   ...:             "d": ["abc", "def", "xyz"],
   ...:         }
   ...:     )
   ...: 
In [6]: df.set_index(pd.RangeIndex(stop=9, step=3), inplace=True)
In [7]: df
Out[7]: 
   a  b  c    d
0  6  3  6  abc
3  7  4  7  def
6  8  5  8  xyz
In [8]: df.to_parquet('bleh.parquet')
In [9]: import pyarrow as pa
In [12]: pa.parquet.read_table('bleh.parquet', use_pandas_metadata=False).to_pandas()
Out[12]: 
   a  b  c    d
0  6  3  6  abc
3  7  4  7  def
6  8  5  8  xyz

@galipremsagar
Copy link
Contributor

galipremsagar commented Jan 15, 2021

use_pandas_metadata seems to be respected only if we pass in any value to columns parameter. When columns is None, use_pandas_metadata is ignored.

For example: #2748 (comment) (Verified this on my end)

I think we should raise this in pyarrow community and ask if this is really an intended behavior, and if so the documentation for this parameter will have to mention explicitly that it would be functional only when columns is not None.

@github-actions
Copy link

This issue has been marked stale due to no recent activity in the past 30d. Please close this issue if no further response or action is needed. Otherwise, please respond with a comment indicating any updates or changes to the original issue and/or confirm this issue still needs to be addressed. This issue will be marked rotten if there is no activity in the next 60d.

@github-actions github-actions bot added the stale label Feb 16, 2021
@github-actions
Copy link

This issue has been labeled inactive-90d due to no recent activity in the past 90 days. Please close this issue if no further response or action is needed. Otherwise, please respond with a comment indicating any updates or changes to the original issue and/or confirm this issue still needs to be addressed.

@vuule
Copy link
Contributor

vuule commented May 19, 2021

@rjzamora Is this issue still relevant?

@rjzamora
Copy link
Member Author

This bug still exists: If you use ParquetWriter to write out a file in multiple chunks with a RangeIndex, cudf.read_parquet will fail when reading the file back (while pandas will not).

I wouldn't consider it a priority, since NVTabular works around it. However, it would be great if cudf automatically ignored a problematic RangeIndex in the metadata.

rapids-bot bot pushed a commit that referenced this issue Jan 14, 2022
Chunked writer (`class ParquetWriter`) now takes an argument `partition_cols`. For each call to `write_table(df)`, the `df` is partitioned and the parts are appended to the same corresponding file in the dataset directory. This can be used when partitioning is desired but when one wants to avoid making many small files in each sub directory e.g.
Instead of repeated call to `write_to_dataset` like so:
```python
write_to_dataset(df1, root_path, partition_cols=['group'])
write_to_dataset(df2, root_path, partition_cols=['group'])
...
```
which will yield the following structure
```
root_dir/
  group=value1/
    <uuid1>.parquet
    <uuid2>.parquet
    ...
  group=value2/
    <uuid1>.parquet
    <uuid2>.parquet
    ...
  ...
```
One can write with
```python
pw = ParquetWriter(root_path, partition_cols=['group'])
pw.write_table(df1)
pw.write_table(df2)
pw.close()
```
to get the structure
```
root_dir/
  group=value1/
    <uuid1>.parquet
  group=value2/
    <uuid1>.parquet
  ...
```

Closes #7196
Also workaround fixes
fixes #9216
fixes #7011

TODO:

- [x] Tests

Authors:
  - Devavret Makkar (https://github.com/devavret)

Approvers:
  - Vyas Ramasubramani (https://github.com/vyasr)
  - Ashwin Srinath (https://github.com/shwina)

URL: #10000
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working cuIO cuIO issue Python Affects Python cuDF API.
Projects
None yet
Development

Successfully merging a pull request may close this issue.

5 participants