-
Notifications
You must be signed in to change notification settings - Fork 915
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement drop_list_duplicates (#7528)
Closes #7494 and partially addresses #7414. This is the new implementation for `drop_list_duplicates`, which removes duplicated entries from lists column. The result is a new lists column in which each list row contains only unique entries. By current implementation, the output lists will have entries sorted by ascending order (null(s) last). Example with null_equality=EQUAL: ``` input: { {1, 1, 2, 1, 3}, {4}, NULL, {}, {NULL, NULL, NULL, 5, 6, 6, 6, 5} } output: { {1, 2, 3}, {4}, NULL, {}, {5, 6, NULL} } ``` Example with null_equality=UNEQUAL: ``` input: { {1, 1, 2, 1, 3}, {4}, NULL, {}, {NULL, NULL, NULL, 5, 6, 6, 6, 5} } output: { {1, 2, 3}, {4}, NULL, {}, {5, 6, NULL, NULL, NULL} } ``` Authors: - Nghia Truong (@ttnghia) Approvers: - AJ Schmidt (@ajschmidt8) - @nvdbaranec - David (@davidwendt) - Keith Kraus (@kkraus14) URL: #7528
- Loading branch information
Showing
7 changed files
with
548 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
/* | ||
* Copyright (c) 2021, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
#pragma once | ||
|
||
#include <cudf/column/column.hpp> | ||
#include <cudf/lists/lists_column_view.hpp> | ||
#include <cudf/stream_compaction.hpp> | ||
|
||
namespace cudf { | ||
namespace lists { | ||
/** | ||
* @addtogroup lists_drop_duplicates | ||
* @{ | ||
* @file | ||
*/ | ||
|
||
/** | ||
* @brief Create a new lists column by removing duplicated entries from each list element in the | ||
* given lists column | ||
* | ||
* @throw cudf::logic_error if any row (list element) in the input column is a nested type. | ||
* | ||
* Given an `input` lists_column_view, the list elements in the column are copied to an output lists | ||
* column such that their duplicated entries are dropped out to keep only the unique ones. The | ||
* order of those entries within each list are not guaranteed to be preserved as in the input. In | ||
* the current implementation, entries in the output lists are sorted by ascending order (nulls | ||
* last), but this is not guaranteed in future implementation. | ||
* | ||
* @param lists_column The input lists_column_view | ||
* @param nulls_equal Flag to specify whether null entries should be considered equal | ||
* @param mr Device resource used to allocate memory | ||
* | ||
* @code{.pseudo} | ||
* lists_column = { {1, 1, 2, 1, 3}, {4}, NULL, {}, {NULL, NULL, NULL, 5, 6, 6, 6, 5} } | ||
* output = { {1, 2, 3}, {4}, NULL, {}, {5, 6, NULL} } | ||
* | ||
* Note that permuting the entries of each list in this output also produces another valid | ||
* output. | ||
* @endcode | ||
* | ||
* @return A list column with list elements having unique entries | ||
*/ | ||
std::unique_ptr<column> drop_list_duplicates( | ||
lists_column_view const& lists_column, | ||
null_equality nulls_equal = null_equality::EQUAL, | ||
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource()); | ||
|
||
/** @} */ // end of group | ||
} // namespace lists | ||
} // namespace cudf |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,294 @@ | ||
/* | ||
* Copyright (c) 2021, NVIDIA CORPORATION. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); | ||
* you may not use this file except in compliance with the License. | ||
* You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
#include <cudf/column/column_factories.hpp> | ||
#include <cudf/detail/copy.hpp> | ||
#include <cudf/detail/gather.hpp> | ||
#include <cudf/detail/iterator.cuh> | ||
#include <cudf/detail/null_mask.hpp> | ||
#include <cudf/detail/nvtx/ranges.hpp> | ||
#include <cudf/lists/detail/sorting.hpp> | ||
#include <cudf/lists/drop_list_duplicates.hpp> | ||
#include <cudf/table/row_operators.cuh> | ||
|
||
#include <rmm/cuda_stream_view.hpp> | ||
#include <rmm/exec_policy.hpp> | ||
|
||
#include <thrust/binary_search.h> | ||
#include <thrust/transform.h> | ||
|
||
namespace cudf { | ||
namespace lists { | ||
namespace detail { | ||
namespace { | ||
using offset_type = lists_column_view::offset_type; | ||
/** | ||
* @brief Copy list entries and entry list offsets ignoring duplicates | ||
* | ||
* Given an array of all entries flattened from a list column and an array that maps each entry to | ||
* the offset of the list containing that entry, those entries and list offsets are copied into | ||
* new arrays such that the duplicated entries within each list will be ignored. | ||
* | ||
* @param all_lists_entries The input array containing all list entries | ||
* @param entries_list_offsets A map from list entries to their corresponding list offsets | ||
* @param nulls_equal Flag to specify whether null entries should be considered equal | ||
* @param stream CUDA stream used for device memory operations and kernel launches | ||
* @param mr Device resource used to allocate memory | ||
* | ||
* @return A pair of columns, the first one contains unique list entries and the second one | ||
* contains their corresponding list offsets | ||
*/ | ||
template <bool has_nulls> | ||
std::vector<std::unique_ptr<column>> get_unique_entries_and_list_offsets( | ||
column_view const& all_lists_entries, | ||
column_view const& entries_list_offsets, | ||
null_equality nulls_equal, | ||
rmm::cuda_stream_view stream, | ||
rmm::mr::device_memory_resource* mr) | ||
{ | ||
// Create an intermediate table, since the comparator only work on tables | ||
auto const device_input_table = | ||
cudf::table_device_view::create(table_view{{all_lists_entries}}, stream); | ||
auto const comp = row_equality_comparator<has_nulls>( | ||
*device_input_table, *device_input_table, nulls_equal == null_equality::EQUAL); | ||
|
||
auto const num_entries = all_lists_entries.size(); | ||
// Allocate memory to store the indices of the unique entries | ||
auto const unique_indices = cudf::make_numeric_column( | ||
entries_list_offsets.type(), num_entries, mask_state::UNALLOCATED, stream); | ||
auto const unique_indices_begin = unique_indices->mutable_view().begin<offset_type>(); | ||
|
||
auto const copy_end = thrust::unique_copy( | ||
rmm::exec_policy(stream), | ||
thrust::make_counting_iterator(0), | ||
thrust::make_counting_iterator(num_entries), | ||
unique_indices_begin, | ||
[list_offsets = entries_list_offsets.begin<offset_type>(), comp] __device__(auto i, auto j) { | ||
return list_offsets[i] == list_offsets[j] && comp(i, j); | ||
}); | ||
|
||
// Collect unique entries and entry list offsets | ||
auto const indices = cudf::detail::slice( | ||
unique_indices->view(), 0, thrust::distance(unique_indices_begin, copy_end)); | ||
return cudf::detail::gather(table_view{{all_lists_entries, entries_list_offsets}}, | ||
indices, | ||
cudf::out_of_bounds_policy::DONT_CHECK, | ||
cudf::detail::negative_index_policy::NOT_ALLOWED, | ||
stream, | ||
mr) | ||
->release(); | ||
} | ||
|
||
/** | ||
* @brief Generate a 0-based offset column for a lists column | ||
* | ||
* Given a lists_column_view, which may have a non-zero offset, generate a new column containing | ||
* 0-based list offsets. This is done by subtracting each of the input list offset by the first | ||
* offset. | ||
* | ||
* @code{.pseudo} | ||
* Given a list column having offsets = { 3, 7, 9, 13 }, | ||
* then output_offsets = { 0, 4, 6, 10 } | ||
* @endcode | ||
* | ||
* @param lists_column The input lists column | ||
* @param stream CUDA stream used for device memory operations and kernel launches | ||
* @param mr Device resource used to allocate memory | ||
* | ||
* @return A column containing 0-based list offsets | ||
*/ | ||
std::unique_ptr<column> generate_clean_offsets(lists_column_view const& lists_column, | ||
rmm::cuda_stream_view stream, | ||
rmm::mr::device_memory_resource* mr) | ||
{ | ||
auto output_offsets = make_numeric_column(data_type{type_to_id<offset_type>()}, | ||
lists_column.size() + 1, | ||
mask_state::UNALLOCATED, | ||
stream, | ||
mr); | ||
thrust::transform( | ||
rmm::exec_policy(stream), | ||
lists_column.offsets_begin(), | ||
lists_column.offsets_end(), | ||
output_offsets->mutable_view().begin<offset_type>(), | ||
[first = lists_column.offsets_begin()] __device__(auto offset) { return offset - *first; }); | ||
return output_offsets; | ||
} | ||
|
||
/** | ||
* @brief Populate list offsets for all list entries | ||
* | ||
* Given an `offsets` column_view containing offsets of a lists column and a number of all list | ||
* entries in the column, generate an array that maps from each list entry to the offset of the list | ||
* containing that entry. | ||
* | ||
* @code{.pseudo} | ||
* num_entries = 10, offsets = { 0, 4, 6, 10 } | ||
* output = { 1, 1, 1, 1, 2, 2, 3, 3, 3, 3 } | ||
* @endcode | ||
* | ||
* @param num_entries The number of list entries | ||
* @param offsets Column view to the list offsets | ||
* @param stream CUDA stream used for device memory operations and kernel launches | ||
* @param mr Device resource used to allocate memory | ||
* | ||
* @return A column containing entry list offsets | ||
*/ | ||
std::unique_ptr<column> generate_entry_list_offsets(size_type num_entries, | ||
column_view const& offsets, | ||
rmm::cuda_stream_view stream) | ||
{ | ||
auto entry_list_offsets = make_numeric_column(offsets.type(), | ||
num_entries, | ||
mask_state::UNALLOCATED, | ||
stream, | ||
rmm::mr::get_current_device_resource()); | ||
thrust::upper_bound(rmm::exec_policy(stream), | ||
offsets.begin<offset_type>(), | ||
offsets.end<offset_type>(), | ||
thrust::make_counting_iterator<offset_type>(0), | ||
thrust::make_counting_iterator<offset_type>(num_entries), | ||
entry_list_offsets->mutable_view().begin<offset_type>()); | ||
return entry_list_offsets; | ||
} | ||
|
||
/** | ||
* @brief Generate list offsets from entry offsets | ||
* | ||
* Generate an array of list offsets for the final result lists column. The list | ||
* offsets of the original lists column are also taken into account to make sure the result lists | ||
* column will have the same empty list rows (if any) as in the original lists column. | ||
* | ||
* @param[in] num_entries The number of unique entries after removing duplicates | ||
* @param[in] entries_list_offsets The mapping from list entries to their list offsets | ||
* @param[out] original_offsets The list offsets of the original lists column, which | ||
* will also be used to store the new list offsets | ||
* @param[in] stream CUDA stream used for device memory operations and kernel launches | ||
* @param[in] mr Device resource used to allocate memory | ||
*/ | ||
void generate_offsets(size_type num_entries, | ||
column_view const& entries_list_offsets, | ||
mutable_column_view const& original_offsets, | ||
rmm::cuda_stream_view stream) | ||
{ | ||
// Firstly, generate temporary list offsets for the unique entries, ignoring empty lists (if any) | ||
// If entries_list_offsets = {1, 1, 1, 1, 2, 3, 3, 3, 4, 4 }, num_entries = 10, | ||
// then new_offsets = { 0, 4, 5, 8, 10 } | ||
auto const new_offsets = allocate_like( | ||
original_offsets, mask_allocation_policy::NEVER, rmm::mr::get_current_device_resource()); | ||
thrust::copy_if(rmm::exec_policy(stream), | ||
thrust::make_counting_iterator<offset_type>(0), | ||
thrust::make_counting_iterator<offset_type>(num_entries + 1), | ||
new_offsets->mutable_view().begin<offset_type>(), | ||
[num_entries, offsets_ptr = entries_list_offsets.begin<offset_type>()] __device__( | ||
auto i) -> bool { | ||
return i == 0 || i == num_entries || offsets_ptr[i] != offsets_ptr[i - 1]; | ||
}); | ||
|
||
// Generate a prefix sum of number of empty lists, storing inplace to the original lists | ||
// offsets | ||
// If the original list offsets is { 0, 0, 5, 5, 6, 6 } (there are 2 empty lists), | ||
// and new_offsets = { 0, 4, 6 }, | ||
// then output = { 0, 1, 1, 2, 2, 3} | ||
auto const iter_trans_begin = cudf::detail::make_counting_transform_iterator( | ||
0, [offsets = original_offsets.begin<offset_type>()] __device__(auto i) { | ||
return (i > 0 && offsets[i] == offsets[i - 1]) ? 1 : 0; | ||
}); | ||
thrust::inclusive_scan(rmm::exec_policy(stream), | ||
iter_trans_begin, | ||
iter_trans_begin + original_offsets.size(), | ||
original_offsets.begin<offset_type>()); | ||
|
||
// Generate the final list offsets | ||
// If the original list offsets are { 0, 0, 5, 5, 6, 6 }, the new offsets are { 0, 4, 6 }, | ||
// and the prefix sums of empty lists are { 0, 1, 1, 2, 2, 3 }, | ||
// then output = { 0, 0, 4, 4, 5, 5 } | ||
thrust::transform(rmm::exec_policy(stream), | ||
thrust::make_counting_iterator<offset_type>(0), | ||
thrust::make_counting_iterator<offset_type>(original_offsets.size()), | ||
original_offsets.begin<offset_type>(), | ||
[prefix_sum_empty_lists = original_offsets.begin<offset_type>(), | ||
offsets = new_offsets->view().begin<offset_type>()] __device__(auto i) { | ||
return offsets[i - prefix_sum_empty_lists[i]]; | ||
}); | ||
} | ||
/** | ||
* @copydoc cudf::lists::drop_list_duplicates | ||
* | ||
* @param stream CUDA stream used for device memory operations and kernel launches | ||
*/ | ||
std::unique_ptr<column> drop_list_duplicates(lists_column_view const& lists_column, | ||
null_equality nulls_equal, | ||
rmm::cuda_stream_view stream, | ||
rmm::mr::device_memory_resource* mr) | ||
{ | ||
if (lists_column.is_empty()) return cudf::empty_like(lists_column.parent()); | ||
if (cudf::is_nested(lists_column.child().type())) { | ||
CUDF_FAIL("Nested types are not supported in drop_list_duplicates."); | ||
} | ||
|
||
// Call segmented sort on the list elements and store them in a temporary column sorted_list | ||
auto const sorted_lists = | ||
detail::sort_lists(lists_column, order::ASCENDING, null_order::AFTER, stream); | ||
|
||
// Flatten all entries (depth = 1) of the lists column | ||
auto const all_lists_entries = lists_column_view(sorted_lists->view()).get_sliced_child(stream); | ||
|
||
// Generate a 0-based offset column | ||
auto lists_offsets = detail::generate_clean_offsets(lists_column, stream, mr); | ||
|
||
// Generate a mapping from list entries to offsets of the lists containing those entries | ||
auto const entries_list_offsets = | ||
detail::generate_entry_list_offsets(all_lists_entries.size(), lists_offsets->view(), stream); | ||
|
||
// Copy non-duplicated entries (along with their list offsets) to new arrays | ||
auto unique_entries_and_list_offsets = | ||
all_lists_entries.has_nulls() | ||
? detail::get_unique_entries_and_list_offsets<true>( | ||
all_lists_entries, entries_list_offsets->view(), nulls_equal, stream, mr) | ||
: detail::get_unique_entries_and_list_offsets<false>( | ||
all_lists_entries, entries_list_offsets->view(), nulls_equal, stream, mr); | ||
|
||
// Generate offsets for the new lists column | ||
detail::generate_offsets(unique_entries_and_list_offsets.front()->size(), | ||
unique_entries_and_list_offsets.back()->view(), | ||
lists_offsets->mutable_view(), | ||
stream); | ||
|
||
// Construct a new lists column without duplicated entries | ||
return make_lists_column(lists_column.size(), | ||
std::move(lists_offsets), | ||
std::move(unique_entries_and_list_offsets.front()), | ||
lists_column.null_count(), | ||
cudf::detail::copy_bitmask(lists_column.parent(), stream, mr)); | ||
} | ||
|
||
} // anonymous namespace | ||
} // namespace detail | ||
|
||
/** | ||
* @copydoc cudf::lists::drop_list_duplicates | ||
*/ | ||
std::unique_ptr<column> drop_list_duplicates(lists_column_view const& lists_column, | ||
null_equality nulls_equal, | ||
rmm::mr::device_memory_resource* mr) | ||
{ | ||
CUDF_FUNC_RANGE(); | ||
return detail::drop_list_duplicates(lists_column, nulls_equal, rmm::cuda_stream_default, mr); | ||
} | ||
|
||
} // namespace lists | ||
} // namespace cudf |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.