forked from taichi-dev/taichi
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[example] Add poission disk sampling example (taichi-dev#6852)
This PR adds the code in this repo: https://github.com/taichi-dev/poisson-sampling-homework to the example list Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
- Loading branch information
1 parent
5e0cf26
commit b607588
Showing
1 changed file
with
173 additions
and
0 deletions.
There are no files selected for viewing
173 changes: 173 additions & 0 deletions
173
python/taichi/examples/algorithm/poisson_disk_sampling.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
""" | ||
Poisson disk sampling in Taichi, a fancy version. | ||
Based on Yuanming Hu's code: https://github.com/taichi-dev/poisson_disk_sampling | ||
User interface: | ||
1. Click on the window to restart the animation. | ||
2. Press `p` to save screenshot. | ||
""" | ||
import taichi as ti | ||
import taichi.math as tm | ||
|
||
ti.init(arch=ti.gpu) | ||
|
||
grid_n = 20 | ||
dx = 1 / grid_n | ||
radius = dx * tm.sqrt(2) | ||
desired_samples = 200 | ||
grid = ti.field(dtype=int, shape=(grid_n, grid_n)) | ||
samples = ti.Vector.field(2, dtype=float, shape=desired_samples) | ||
window_size = 800 | ||
dfield = ti.Vector.field(4, dtype=float, shape=(window_size, window_size)) | ||
img = ti.Vector.field(3, dtype=float, shape=(window_size, window_size)) | ||
iMouse = ti.Vector.field(2, dtype=float, shape=()) | ||
iMouse[None] = [0.5, 0.5] | ||
iResolution = tm.vec2(window_size) | ||
head = ti.field(int, shape=()) | ||
tail = ti.field(int, shape=()) | ||
sample_count = ti.field(int, shape=()) | ||
|
||
|
||
@ti.func | ||
def coord_to_index(p): | ||
return int(p * tm.vec2(grid_n)) | ||
|
||
|
||
@ti.kernel | ||
def refresh_scene(): | ||
head[None] = 0 | ||
tail[None] = 1 | ||
sample_count[None] = 1 | ||
|
||
samples[0] = (p0 := iMouse[None]) | ||
grid[coord_to_index(p0)] = 0 | ||
|
||
for i, j in grid: | ||
grid[i, j] = -1 | ||
|
||
for i, j in dfield: | ||
dfield[i, j] = tm.vec4(1e5) | ||
img[i, j] = tm.vec3(1) | ||
|
||
|
||
@ti.func | ||
def find_nearest_point(p): | ||
x, y = coord_to_index(p) | ||
dmin = 1e5 | ||
nearest = iMouse[None] | ||
for i in range(ti.max(0, x - 2), ti.min(grid_n, x + 3)): | ||
for j in range(ti.max(0, y - 2), ti.min(grid_n, y + 3)): | ||
ind = grid[i, j] | ||
if ind != -1: | ||
q = samples[ind] | ||
d = (q - p).norm() | ||
if d < dmin: | ||
dmin = d | ||
nearest = q | ||
return dmin, nearest | ||
|
||
|
||
@ti.kernel | ||
def poisson_disk_sample(num_samples: int) -> int: | ||
while head[None] < tail[None] and head[None] < ti.min( | ||
num_samples, desired_samples): | ||
source_x = samples[head[None]] | ||
head[None] += 1 | ||
|
||
for _ in range(100): | ||
theta = ti.random() * 2 * tm.pi | ||
offset = tm.vec2(tm.cos(theta), | ||
tm.sin(theta)) * (1 + ti.random()) * radius | ||
new_x = source_x + offset | ||
new_index = coord_to_index(new_x) | ||
|
||
if 0 <= new_x[0] < 1 and 0 <= new_x[1] < 1: | ||
collision = (find_nearest_point(new_x)[0] < radius - 1e-6) | ||
if not collision and tail[None] < desired_samples: | ||
samples[tail[None]] = new_x | ||
grid[new_index] = tail[None] | ||
tail[None] += 1 | ||
return tail[None] | ||
|
||
|
||
@ti.func | ||
def hash21(p): | ||
return tm.fract(tm.sin(tm.dot(p, tm.vec2(127.619, 157.583))) * 43758.5453) | ||
|
||
|
||
@ti.func | ||
def sample_dist(uv): | ||
uv = uv * iResolution | ||
x, y = tm.clamp(0, iResolution - 1, uv).cast(int) | ||
return dfield[x, y] | ||
|
||
|
||
@ti.kernel | ||
def compute_distance_field(): | ||
for i, j in dfield: | ||
uv = tm.vec2(i, j) / iResolution | ||
d, p = find_nearest_point(uv) | ||
d = (uv - p).norm() - radius / 2. | ||
dfield[i, j] = tm.vec4(d, p.x, p.y, radius / 2.) | ||
|
||
|
||
@ti.kernel | ||
def render(): | ||
for i, j in img: | ||
uv = tm.vec2(i, j) / iResolution.y | ||
st = tm.fract(uv * grid_n) - 0.5 | ||
dg = 0.5 - abs(st) | ||
d1 = ti.min(dg.x, dg.y) | ||
d1 = tm.smoothstep(0.05, 0.0, d1) | ||
col = (1 - tm.vec3(d1)) * 0.7 | ||
sf = 2 / iResolution.y | ||
buf = sample_dist(uv) | ||
bufSh = sample_dist(uv + tm.vec2(0.005, 0.015)) | ||
cCol = tm.vec3(hash21(buf.yz + 0.3), hash21(buf.yz), | ||
hash21(buf.yz + 0.09)) | ||
pat = (abs(tm.fract(-buf.x * 150) - 0.5) * 2) / 300 | ||
col = tm.mix(col, tm.vec3(0), | ||
(1 - tm.smoothstep(0, 3 * sf, pat)) * 0.25) | ||
ew, ew2 = 0.005, 0.008 | ||
cCol2 = tm.mix(cCol, tm.vec3(1), 0.9) | ||
col = tm.mix(col, tm.vec3(0), | ||
(1 - tm.smoothstep(0, sf * 2, bufSh.x)) * 0.4) | ||
col = tm.mix(col, tm.vec3(0), 1 - tm.smoothstep(sf, 0, -buf.x)) | ||
col = tm.mix(col, cCol2, 1 - tm.smoothstep(sf, 0, -buf.x - ew)) | ||
col = tm.mix(col, tm.vec3(0), | ||
1 - tm.smoothstep(sf, 0, -buf.x - ew2 - ew)) | ||
col = tm.mix(col, cCol, | ||
1 - tm.smoothstep(sf, 0., -buf.x - ew2 - ew * 2)) | ||
col = tm.sqrt(ti.max(col, 0)) | ||
img[i, j] = col | ||
|
||
|
||
def main(): | ||
refresh_scene() | ||
gui = ti.ui.Window("Poisson Disk Sampling", res=(window_size, window_size)) | ||
canvas = gui.get_canvas() | ||
gui.fps_limit = 10 | ||
while gui.running: | ||
gui.get_event(ti.ui.PRESS) | ||
if gui.is_pressed(ti.ui.ESCAPE): | ||
gui.running = False | ||
|
||
if gui.is_pressed(ti.ui.LMB): | ||
iMouse[None] = gui.get_cursor_pos() | ||
refresh_scene() | ||
|
||
if gui.is_pressed("p"): | ||
canvas.set_image(img) | ||
gui.save_image("screenshot.png") | ||
|
||
poisson_disk_sample(sample_count[None]) | ||
sample_count[None] += 1 | ||
compute_distance_field() | ||
render() | ||
canvas.set_image(img) | ||
gui.show() | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |