Skip to content

Commit

Permalink
DEPR: Make FutureWarning into DeprecationWarning for groupby.apply (p…
Browse files Browse the repository at this point in the history
…andas-dev#56952)

* DEPR: Make FutureWarning into DeprecationWarning for groupby.apply

* suppress extra warning when CoW warning mode

---------

Co-authored-by: Joris Van den Bossche <[email protected]>
Co-authored-by: Thomas Li <[email protected]>
  • Loading branch information
3 people authored and pmhatre1 committed May 7, 2024
1 parent 462b775 commit 52be621
Show file tree
Hide file tree
Showing 21 changed files with 167 additions and 158 deletions.
2 changes: 1 addition & 1 deletion pandas/core/groupby/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -1856,7 +1856,7 @@ def f(g):
message=_apply_groupings_depr.format(
type(self).__name__, "apply"
),
category=FutureWarning,
category=DeprecationWarning,
stacklevel=find_stack_level(),
)
except TypeError:
Expand Down
2 changes: 1 addition & 1 deletion pandas/core/resample.py
Original file line number Diff line number Diff line change
Expand Up @@ -2929,7 +2929,7 @@ def _apply(
new_message = _apply_groupings_depr.format("DataFrameGroupBy", "resample")
with rewrite_warning(
target_message=target_message,
target_category=FutureWarning,
target_category=DeprecationWarning,
new_message=new_message,
):
result = grouped.apply(how, *args, include_groups=include_groups, **kwargs)
Expand Down
12 changes: 6 additions & 6 deletions pandas/tests/extension/base/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -114,13 +114,13 @@ def test_groupby_extension_transform(self, data_for_grouping):
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
df.groupby("B", group_keys=False).apply(groupby_apply_op)
df.groupby("B", group_keys=False).A.apply(groupby_apply_op)
with tm.assert_produces_warning(DeprecationWarning, match=msg):
df.groupby("B", group_keys=False, observed=False).apply(groupby_apply_op)
df.groupby("B", group_keys=False, observed=False).A.apply(groupby_apply_op)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
df.groupby("A", group_keys=False).apply(groupby_apply_op)
df.groupby("A", group_keys=False).B.apply(groupby_apply_op)
with tm.assert_produces_warning(DeprecationWarning, match=msg):
df.groupby("A", group_keys=False, observed=False).apply(groupby_apply_op)
df.groupby("A", group_keys=False, observed=False).B.apply(groupby_apply_op)

def test_groupby_apply_identity(self, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/frame/test_stack_unstack.py
Original file line number Diff line number Diff line change
Expand Up @@ -1817,7 +1817,7 @@ def test_unstack_bug(self, future_stack):
)

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby(["state", "exp", "barcode", "v"]).apply(len)

unstacked = result.unstack()
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/groupby/aggregate/test_other.py
Original file line number Diff line number Diff line change
Expand Up @@ -502,15 +502,15 @@ def test_agg_timezone_round_trip():

# GH#27110 applying iloc should return a DataFrame
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert ts == grouped.apply(lambda x: x.iloc[0]).iloc[0, 1]

ts = df["B"].iloc[2]
assert ts == grouped.last()["B"].iloc[0]

# GH#27110 applying iloc should return a DataFrame
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
assert ts == grouped.apply(lambda x: x.iloc[-1]).iloc[0, 1]


Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/groupby/methods/test_value_counts.py
Original file line number Diff line number Diff line change
Expand Up @@ -326,7 +326,7 @@ def test_against_frame_and_seriesgroupby(
)
if frame:
# compare against apply with DataFrame value_counts
warn = FutureWarning if groupby == "column" else None
warn = DeprecationWarning if groupby == "column" else None
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(warn, match=msg):
expected = gp.apply(
Expand Down
142 changes: 71 additions & 71 deletions pandas/tests/groupby/test_apply.py

Large diffs are not rendered by default.

18 changes: 10 additions & 8 deletions pandas/tests/groupby/test_apply_mutate.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,12 +14,12 @@ def test_group_by_copy():
).set_index("name")

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
grp_by_same_value = df.groupby(["age"], group_keys=False).apply(
lambda group: group
)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
grp_by_copy = df.groupby(["age"], group_keys=False).apply(
lambda group: group.copy()
)
Expand Down Expand Up @@ -54,9 +54,9 @@ def f_no_copy(x):
return x.groupby("cat2")["rank"].min()

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
grpby_copy = df.groupby("cat1").apply(f_copy)
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
grpby_no_copy = df.groupby("cat1").apply(f_no_copy)
tm.assert_series_equal(grpby_copy, grpby_no_copy)

Expand All @@ -68,14 +68,14 @@ def test_no_mutate_but_looks_like():
df = pd.DataFrame({"key": [1, 1, 1, 2, 2, 2, 3, 3, 3], "value": range(9)})

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result1 = df.groupby("key", group_keys=True).apply(lambda x: x[:].key)
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result2 = df.groupby("key", group_keys=True).apply(lambda x: x.key)
tm.assert_series_equal(result1, result2)


def test_apply_function_with_indexing():
def test_apply_function_with_indexing(warn_copy_on_write):
# GH: 33058
df = pd.DataFrame(
{"col1": ["A", "A", "A", "B", "B", "B"], "col2": [1, 2, 3, 4, 5, 6]}
Expand All @@ -86,7 +86,9 @@ def fn(x):
return x.col2

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(
DeprecationWarning, match=msg, raise_on_extra_warnings=not warn_copy_on_write
):
result = df.groupby(["col1"], as_index=False).apply(fn)
expected = pd.Series(
[1, 2, 0, 4, 5, 0],
Expand Down
6 changes: 3 additions & 3 deletions pandas/tests/groupby/test_categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ def f(x):
return x.drop_duplicates("person_name").iloc[0]

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = g.apply(f)
expected = x.iloc[[0, 1]].copy()
expected.index = Index([1, 2], name="person_id")
Expand Down Expand Up @@ -333,7 +333,7 @@ def test_apply(ordered):
idx = MultiIndex.from_arrays([missing, dense], names=["missing", "dense"])
expected = Series(1, index=idx)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = grouped.apply(lambda x: 1)
tm.assert_series_equal(result, expected)

Expand Down Expand Up @@ -2049,7 +2049,7 @@ def test_category_order_apply(as_index, sort, observed, method, index_kind, orde
df["a2"] = df["a"]
df = df.set_index(keys)
gb = df.groupby(keys, as_index=as_index, sort=sort, observed=observed)
warn = FutureWarning if method == "apply" and index_kind == "range" else None
warn = DeprecationWarning if method == "apply" and index_kind == "range" else None
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(warn, match=msg):
op_result = getattr(gb, method)(lambda x: x.sum(numeric_only=True))
Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/groupby/test_counting.py
Original file line number Diff line number Diff line change
Expand Up @@ -290,7 +290,7 @@ def test_count():
for key in ["1st", "2nd", ["1st", "2nd"]]:
left = df.groupby(key).count()
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
right = df.groupby(key).apply(DataFrame.count).drop(key, axis=1)
tm.assert_frame_equal(left, right)

Expand Down
22 changes: 11 additions & 11 deletions pandas/tests/groupby/test_groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ def max_value(group):
return group.loc[group["value"].idxmax()]

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
applied = df.groupby("A").apply(max_value)
result = applied.dtypes
expected = df.dtypes
Expand Down Expand Up @@ -203,9 +203,9 @@ def f3(x):

# correct result
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result1 = df.groupby("a").apply(f1)
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result2 = df2.groupby("a").apply(f1)
tm.assert_frame_equal(result1, result2)

Expand Down Expand Up @@ -1092,13 +1092,13 @@ def summarize_random_name(df):
return Series({"count": 1, "mean": 2, "omissions": 3}, name=df.iloc[0]["A"])

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
metrics = df.groupby("A").apply(summarize)
assert metrics.columns.name is None
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
metrics = df.groupby("A").apply(summarize, "metrics")
assert metrics.columns.name == "metrics"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
metrics = df.groupby("A").apply(summarize_random_name)
assert metrics.columns.name is None

Expand Down Expand Up @@ -1393,7 +1393,7 @@ def test_dont_clobber_name_column():
)

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("key", group_keys=False).apply(lambda x: x)
tm.assert_frame_equal(result, df)

Expand Down Expand Up @@ -1477,7 +1477,7 @@ def freducex(x):

# make sure all these work
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
grouped.apply(f)
grouped.aggregate(freduce)
grouped.aggregate({"C": freduce, "D": freduce})
Expand All @@ -1500,7 +1500,7 @@ def f(group):
return group.copy()

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
df.groupby("a", sort=False, group_keys=False).apply(f)

expected_names = [0, 1, 2]
Expand Down Expand Up @@ -1708,7 +1708,7 @@ def test_sort(x):
tm.assert_frame_equal(x, x.sort_values(by=sort_column))

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
g.apply(test_sort)


Expand Down Expand Up @@ -1893,7 +1893,7 @@ def test_empty_groupby_apply_nonunique_columns():
df.columns = [0, 1, 2, 0]
gb = df.groupby(df[1], group_keys=False)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
res = gb.apply(lambda x: x)
assert (res.dtypes == df.dtypes).all()

Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/groupby/test_groupby_dropna.py
Original file line number Diff line number Diff line change
Expand Up @@ -324,7 +324,7 @@ def test_groupby_apply_with_dropna_for_multi_index(dropna, data, selected_data,
df = pd.DataFrame(data)
gb = df.groupby("groups", dropna=dropna)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = gb.apply(lambda grp: pd.DataFrame({"values": range(len(grp))}))

mi_tuples = tuple(zip(data["groups"], selected_data["values"]))
Expand Down
10 changes: 8 additions & 2 deletions pandas/tests/groupby/test_groupby_subclass.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,10 @@ def func(group):

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(
FutureWarning, match=msg, raise_on_extra_warnings=False
DeprecationWarning,
match=msg,
raise_on_extra_warnings=False,
check_stacklevel=False,
):
result = custom_df.groupby("c").apply(func)
expected = tm.SubclassedSeries(["hello"] * 3, index=Index([7, 8, 9], name="c"))
Expand Down Expand Up @@ -123,7 +126,10 @@ def test_groupby_resample_preserves_subclass(obj):
# Confirm groupby.resample() preserves dataframe type
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(
FutureWarning, match=msg, raise_on_extra_warnings=False
DeprecationWarning,
match=msg,
raise_on_extra_warnings=False,
check_stacklevel=False,
):
result = df.groupby("Buyer").resample("5D").sum()
assert isinstance(result, obj)
2 changes: 1 addition & 1 deletion pandas/tests/groupby/test_grouping.py
Original file line number Diff line number Diff line change
Expand Up @@ -238,7 +238,7 @@ def test_grouper_creation_bug(self):
tm.assert_frame_equal(result, expected)

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = g.apply(lambda x: x.sum())
expected["A"] = [0, 2, 4]
expected = expected.loc[:, ["A", "B"]]
Expand Down
10 changes: 5 additions & 5 deletions pandas/tests/groupby/test_timegrouper.py
Original file line number Diff line number Diff line change
Expand Up @@ -478,10 +478,10 @@ def sumfunc_series(x):
return Series([x["value"].sum()], ("sum",))

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = df.groupby(Grouper(key="date")).apply(sumfunc_series)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df_dt.groupby(Grouper(freq="ME", key="date")).apply(sumfunc_series)
tm.assert_frame_equal(
result.reset_index(drop=True), expected.reset_index(drop=True)
Expand All @@ -499,9 +499,9 @@ def sumfunc_value(x):
return x.value.sum()

msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = df.groupby(Grouper(key="date")).apply(sumfunc_value)
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df_dt.groupby(Grouper(freq="ME", key="date")).apply(sumfunc_value)
tm.assert_series_equal(
result.reset_index(drop=True), expected.reset_index(drop=True)
Expand Down Expand Up @@ -929,7 +929,7 @@ def test_groupby_apply_timegrouper_with_nat_apply_squeeze(

# function that returns a Series
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
res = gb.apply(lambda x: x["Quantity"] * 2)

dti = Index([Timestamp("2013-12-31")], dtype=df["Date"].dtype, name="Date")
Expand Down
4 changes: 2 additions & 2 deletions pandas/tests/groupby/transform/test_transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -668,7 +668,7 @@ def f(group):

grouped = df.groupby("c")
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = grouped.apply(f)

assert result["d"].dtype == np.float64
Expand Down Expand Up @@ -825,7 +825,7 @@ def test_cython_transform_frame(request, op, args, targop, df_fix, gb_target):
if op != "shift" or not isinstance(gb_target.get("by"), (str, list)):
warn = None
else:
warn = FutureWarning
warn = DeprecationWarning
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(warn, match=msg):
expected = gb.apply(targop)
Expand Down
10 changes: 5 additions & 5 deletions pandas/tests/resample/test_datetime_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -1058,10 +1058,10 @@ def test_resample_segfault(unit):
).set_index("timestamp")
df.index = df.index.as_unit(unit)
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("ID").resample("5min").sum()
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = df.groupby("ID").apply(lambda x: x.resample("5min").sum())
tm.assert_frame_equal(result, expected)

Expand All @@ -1082,7 +1082,7 @@ def test_resample_dtype_preservation(unit):
assert result.val.dtype == np.int32

msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("group").resample("1D").ffill()
assert result.val.dtype == np.int32

Expand Down Expand Up @@ -1863,10 +1863,10 @@ def f(data, add_arg):

df = DataFrame({"A": 1, "B": 2}, index=date_range("2017", periods=10))
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("A").resample("D").agg(f, multiplier).astype(float)
msg = "DataFrameGroupBy.resample operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
expected = df.groupby("A").resample("D").mean().multiply(multiplier)
tm.assert_frame_equal(result, expected)

Expand Down
2 changes: 1 addition & 1 deletion pandas/tests/resample/test_resample_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ def test_groupby_resample_api():
index = pd.MultiIndex.from_arrays([[1] * 8 + [2] * 8, i], names=["group", "date"])
expected = DataFrame({"val": [5] * 7 + [6] + [7] * 7 + [8]}, index=index)
msg = "DataFrameGroupBy.apply operated on the grouping columns"
with tm.assert_produces_warning(FutureWarning, match=msg):
with tm.assert_produces_warning(DeprecationWarning, match=msg):
result = df.groupby("group").apply(lambda x: x.resample("1D").ffill())[["val"]]
tm.assert_frame_equal(result, expected)

Expand Down
Loading

0 comments on commit 52be621

Please sign in to comment.