Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CLN: Partially revert #29553 #51137

Merged
merged 4 commits into from
Feb 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 1 addition & 12 deletions pandas/core/array_algos/replace.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,8 +19,6 @@
)

from pandas.core.dtypes.common import (
is_datetimelike_v_numeric,
is_numeric_v_string_like,
is_re,
is_re_compilable,
is_scalar,
Expand All @@ -44,7 +42,7 @@ def should_use_regex(regex: bool, to_replace: Any) -> bool:

def compare_or_regex_search(
a: ArrayLike, b: Scalar | Pattern, regex: bool, mask: npt.NDArray[np.bool_]
) -> ArrayLike | bool:
) -> ArrayLike:
"""
Compare two array-like inputs of the same shape or two scalar values

Expand Down Expand Up @@ -95,15 +93,6 @@ def _check_comparison_types(
if isinstance(a, np.ndarray):
a = a[mask]

if is_numeric_v_string_like(a, b):
# GH#29553 avoid deprecation warnings from numpy
return np.zeros(a.shape, dtype=bool)

elif is_datetimelike_v_numeric(a, b):
# GH#29553 avoid deprecation warnings from numpy
_check_comparison_types(False, a, b)
return False

result = op(a)

if isinstance(result, np.ndarray) and mask is not None:
Expand Down
60 changes: 0 additions & 60 deletions pandas/core/dtypes/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -1067,64 +1067,6 @@ def is_numeric_v_string_like(a: ArrayLike, b) -> bool:
)


# This exists to silence numpy deprecation warnings, see GH#29553
def is_datetimelike_v_numeric(a, b) -> bool:
"""
Check if we are comparing a datetime-like object to a numeric object.
By "numeric," we mean an object that is either of an int or float dtype.

Parameters
----------
a : array-like, scalar
The first object to check.
b : array-like, scalar
The second object to check.

Returns
-------
boolean
Whether we return a comparing a datetime-like to a numeric object.

Examples
--------
>>> from datetime import datetime
>>> dt = np.datetime64(datetime(2017, 1, 1))
>>>
>>> is_datetimelike_v_numeric(1, 1)
False
>>> is_datetimelike_v_numeric(dt, dt)
False
>>> is_datetimelike_v_numeric(1, dt)
True
>>> is_datetimelike_v_numeric(dt, 1) # symmetric check
True
>>> is_datetimelike_v_numeric(np.array([dt]), 1)
True
>>> is_datetimelike_v_numeric(np.array([1]), dt)
True
>>> is_datetimelike_v_numeric(np.array([dt]), np.array([1]))
True
>>> is_datetimelike_v_numeric(np.array([1]), np.array([2]))
False
>>> is_datetimelike_v_numeric(np.array([dt]), np.array([dt]))
False
"""
if not hasattr(a, "dtype"):
a = np.asarray(a)
if not hasattr(b, "dtype"):
b = np.asarray(b)

def is_numeric(x):
"""
Check if an object has a numeric dtype (i.e. integer or float).
"""
return is_integer_dtype(x) or is_float_dtype(x)

return (needs_i8_conversion(a) and is_numeric(b)) or (
needs_i8_conversion(b) and is_numeric(a)
)


def needs_i8_conversion(arr_or_dtype) -> bool:
"""
Check whether the array or dtype should be converted to int64.
Expand Down Expand Up @@ -1790,7 +1732,6 @@ def is_all_strings(value: ArrayLike) -> bool:
"is_datetime64_dtype",
"is_datetime64_ns_dtype",
"is_datetime64tz_dtype",
"is_datetimelike_v_numeric",
"is_datetime_or_timedelta_dtype",
"is_decimal",
"is_dict_like",
Expand All @@ -1809,7 +1750,6 @@ def is_all_strings(value: ArrayLike) -> bool:
"is_number",
"is_numeric_dtype",
"is_any_numeric_dtype",
"is_numeric_v_string_like",
"is_object_dtype",
"is_period_dtype",
"is_re",
Expand Down
7 changes: 0 additions & 7 deletions pandas/core/dtypes/missing.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,6 @@
is_bool_dtype,
is_categorical_dtype,
is_complex_dtype,
is_datetimelike_v_numeric,
is_dtype_equal,
is_extension_array_dtype,
is_float_dtype,
Expand Down Expand Up @@ -505,8 +504,6 @@ def array_equivalent(
# fastpath when we require that the dtypes match (Block.equals)
if left.dtype.kind in ["f", "c"]:
return _array_equivalent_float(left, right)
elif is_datetimelike_v_numeric(left.dtype, right.dtype):
return False
elif needs_i8_conversion(left.dtype):
return _array_equivalent_datetimelike(left, right)
elif is_string_or_object_np_dtype(left.dtype):
Expand All @@ -529,10 +526,6 @@ def array_equivalent(
return True
return ((left == right) | (isna(left) & isna(right))).all()

elif is_datetimelike_v_numeric(left, right):
# GH#29553 avoid numpy deprecation warning
return False

elif needs_i8_conversion(left.dtype) or needs_i8_conversion(right.dtype):
# datetime64, timedelta64, Period
if not is_dtype_equal(left.dtype, right.dtype):
Expand Down
5 changes: 1 addition & 4 deletions pandas/core/internals/blocks.py
Original file line number Diff line number Diff line change
Expand Up @@ -677,10 +677,7 @@ def replace_list(
# GH#38086 faster if we know we dont need to check for regex
masks = [missing.mask_missing(values, s[0]) for s in pairs]

# error: Argument 1 to "extract_bool_array" has incompatible type
# "Union[ExtensionArray, ndarray, bool]"; expected "Union[ExtensionArray,
# ndarray]"
masks = [extract_bool_array(x) for x in masks] # type: ignore[arg-type]
masks = [extract_bool_array(x) for x in masks]

rb = [self if inplace else self.copy()]
for i, (src, dest) in enumerate(pairs):
Expand Down
17 changes: 0 additions & 17 deletions pandas/tests/dtypes/test_common.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,5 @@
from __future__ import annotations

from datetime import datetime

import numpy as np
import pytest

Expand Down Expand Up @@ -517,21 +515,6 @@ def test_is_numeric_v_string_like():
assert com.is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2]))


def test_is_datetimelike_v_numeric():
dt = np.datetime64(datetime(2017, 1, 1))

assert not com.is_datetimelike_v_numeric(1, 1)
assert not com.is_datetimelike_v_numeric(dt, dt)
assert not com.is_datetimelike_v_numeric(np.array([1]), np.array([2]))
assert not com.is_datetimelike_v_numeric(np.array([dt]), np.array([dt]))

assert com.is_datetimelike_v_numeric(1, dt)
assert com.is_datetimelike_v_numeric(1, dt)
assert com.is_datetimelike_v_numeric(np.array([dt]), 1)
assert com.is_datetimelike_v_numeric(np.array([1]), dt)
assert com.is_datetimelike_v_numeric(np.array([dt]), np.array([1]))


def test_needs_i8_conversion():
assert not com.needs_i8_conversion(str)
assert not com.needs_i8_conversion(np.int64)
Expand Down