Skip to content

Commit

Permalink
[Doc] Fix cosinesimil OpenSearch Score and Distance Function formula (#…
Browse files Browse the repository at this point in the history
…4138) (#4139)

Signed-off-by: Alireza Fatemi <[email protected]>
(cherry picked from commit 8d394f5)
Signed-off-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
  • Loading branch information
github-actions[bot] committed May 25, 2023
1 parent 952490d commit 23c3e70
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 4 deletions.
2 changes: 1 addition & 1 deletion _search-plugins/knn/approximate-knn.md
Original file line number Diff line number Diff line change
Expand Up @@ -299,7 +299,7 @@ A space corresponds to the function used to measure the distance between two poi
<td>\[ d(\mathbf{x}, \mathbf{y}) = 1 - cos { \theta } = 1 - {\mathbf{x} &middot; \mathbf{y} \over \|\mathbf{x}\| &middot; \|\mathbf{y}\|}\]\[ = 1 -
{\sum_{i=1}^n x_i y_i \over \sqrt{\sum_{i=1}^n x_i^2} &middot; \sqrt{\sum_{i=1}^n y_i^2}}\]
where \(\|\mathbf{x}\|\) and \(\|\mathbf{y}\|\) represent the norms of vectors x and y respectively.</td>
<td><b>nmslib</b> and <b>faiss:</b>\[ score = {1 \over 1 + d } \]<br><b>Lucene:</b>\[ score = {1 + d \over 2}\]</td>
<td><b>nmslib</b> and <b>faiss:</b>\[ score = {1 \over 1 + d } \]<br><b>Lucene:</b>\[ score = {2 - d \over 2}\]</td>
</tr>
<tr>
<td>innerproduct (not supported for Lucene)</td>
Expand Down
6 changes: 3 additions & 3 deletions _search-plugins/knn/knn-score-script.md
Original file line number Diff line number Diff line change
Expand Up @@ -306,10 +306,10 @@ A space corresponds to the function used to measure the distance between two poi
</tr>
<tr>
<td>cosinesimil</td>
<td>\[ d(\mathbf{x}, \mathbf{y}) = cos \theta = {\mathbf{x} &middot; \mathbf{y} \over \|\mathbf{x}\| &middot; \|\mathbf{y}\|}\]\[ =
<td>\[ d(\mathbf{x}, \mathbf{y}) = 1 - cos { \theta } = 1 - {\mathbf{x} &middot; \mathbf{y} \over \|\mathbf{x}\| &middot; \|\mathbf{y}\|}\]\[ = 1 -
{\sum_{i=1}^n x_i y_i \over \sqrt{\sum_{i=1}^n x_i^2} &middot; \sqrt{\sum_{i=1}^n y_i^2}}\]
where \(\|\mathbf{x}\|\) and \(\|\mathbf{y}\|\) represent normalized vectors.</td>
<td>\[ score = 1 + d \]</td>
where \(\|\mathbf{x}\|\) and \(\|\mathbf{y}\|\) represent the norms of vectors x and y respectively.</td>
<td>\[ score = 2 - d \]</td>
</tr>
<tr>
<td>innerproduct (not supported for Lucene)</td>
Expand Down

0 comments on commit 23c3e70

Please sign in to comment.