Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

vLLM support for FAQGen #884

Merged
merged 13 commits into from
Nov 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions .github/workflows/docker/compose/llms-compose.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -58,3 +58,7 @@ services:
build:
dockerfile: comps/llms/text-generation/predictionguard/Dockerfile
image: ${REGISTRY:-opea}/llm-textgen-predictionguard:${TAG:-latest}
llm-faqgen-vllm:
build:
dockerfile: comps/llms/faq-generation/vllm/langchain/Dockerfile
image: ${REGISTRY:-opea}/llm-faqgen-vllm:${TAG:-latest}
1 change: 1 addition & 0 deletions comps/cores/mega/gateway.py
Original file line number Diff line number Diff line change
Expand Up @@ -595,6 +595,7 @@ async def handle_request(self, request: Request, files: List[UploadFile] = File(
presence_penalty=chat_request.presence_penalty if chat_request.presence_penalty else 0.0,
repetition_penalty=chat_request.repetition_penalty if chat_request.repetition_penalty else 1.03,
streaming=stream_opt,
model=chat_request.model if chat_request.model else None,
)
result_dict, runtime_graph = await self.megaservice.schedule(
initial_inputs={"query": prompt}, llm_parameters=parameters
Expand Down
25 changes: 25 additions & 0 deletions comps/llms/faq-generation/vllm/langchain/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

FROM python:3.11-slim

RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
libgl1-mesa-glx \
libjemalloc-dev

RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
chown -R user /home/user/

USER user

COPY comps /home/user/comps

RUN pip install --no-cache-dir --upgrade pip setuptools && \
pip install --no-cache-dir -r /home/user/comps/llms/faq-generation/vllm/langchain/requirements.txt

ENV PYTHONPATH=$PYTHONPATH:/home/user

WORKDIR /home/user/comps/llms/faq-generation/vllm/langchain

ENTRYPOINT ["bash", "entrypoint.sh"]
77 changes: 77 additions & 0 deletions comps/llms/faq-generation/vllm/langchain/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# vLLM FAQGen LLM Microservice

This microservice interacts with the vLLM server to generate FAQs from Input Text.[vLLM](https://github.com/vllm-project/vllm) is a fast and easy-to-use library for LLM inference and serving, it delivers state-of-the-art serving throughput with a set of advanced features such as PagedAttention, Continuous batching and etc.. Besides GPUs, vLLM already supported [Intel CPUs](https://www.intel.com/content/www/us/en/products/overview.html) and [Gaudi accelerators](https://habana.ai/products).

## 🚀1. Start Microservice with Docker

If you start an LLM microservice with docker, the `docker_compose_llm.yaml` file will automatically start a VLLM service with docker.

To setup or build the vLLM image follow the instructions provided in [vLLM Gaudi](https://github.com/opea-project/GenAIComps/tree/main/comps/llms/text-generation/vllm/langchain#22-vllm-on-gaudi)

### 1.1 Setup Environment Variables

In order to start vLLM and LLM services, you need to setup the following environment variables first.

```bash
export HF_TOKEN=${your_hf_api_token}
export vLLM_ENDPOINT="http://${your_ip}:8008"
export LLM_MODEL_ID=${your_hf_llm_model}
```

### 1.3 Build Docker Image

```bash
cd ../../../../../
docker build -t opea/llm-faqgen-vllm:latest --build-arg https_proxy=$https_proxy --build-arg http_proxy=$http_proxy -f comps/llms/faq-generation/vllm/langchain/Dockerfile .
```

To start a docker container, you have two options:

- A. Run Docker with CLI
- B. Run Docker with Docker Compose

You can choose one as needed.

### 1.3 Run Docker with CLI (Option A)

```bash
docker run -d -p 8008:80 -v ./data:/data --name vllm-service --shm-size 1g opea/vllm:hpu --model-id ${LLM_MODEL_ID}
```

```bash
docker run -d --name="llm-faqgen-server" -p 9000:9000 --ipc=host -e http_proxy=$http_proxy -e https_proxy=$https_proxy -e vLLM_ENDPOINT=$vLLM_ENDPOINT -e HUGGINGFACEHUB_API_TOKEN=$HF_TOKEN opea/llm-faqgen-vllm:latest
```

### 1.4 Run Docker with Docker Compose (Option B)

```bash
docker compose -f docker_compose_llm.yaml up -d
```

## 🚀3. Consume LLM Service

### 3.1 Check Service Status

```bash
curl http://${your_ip}:9000/v1/health_check\
-X GET \
-H 'Content-Type: application/json'
```

### 3.2 Consume FAQGen LLM Service

```bash
# Streaming Response
# Set streaming to True. Default will be True.
curl http://${your_ip}:9000/v1/faqgen \
-X POST \
sgurunat marked this conversation as resolved.
Show resolved Hide resolved
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."}' \
-H 'Content-Type: application/json'

# Non-Streaming Response
# Set streaming to False.
curl http://${your_ip}:9000/v1/faqgen \
-X POST \
-d '{"query":"Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5.", "streaming":false}' \
-H 'Content-Type: application/json'
```
2 changes: 2 additions & 0 deletions comps/llms/faq-generation/vllm/langchain/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

version: "3.8"

services:
vllm-service:
image: opea/vllm:hpu
container_name: vllm-gaudi-server
ports:
- "8008:80"
volumes:
- "./data:/data"
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
HF_TOKEN: ${HF_TOKEN}
HABANA_VISIBLE_DEVICES: all
OMPI_MCA_btl_vader_single_copy_mechanism: none
LLM_MODEL_ID: ${LLM_MODEL_ID}
runtime: habana
cap_add:
- SYS_NICE
ipc: host
command: --enforce-eager --model $LLM_MODEL_ID --tensor-parallel-size 1 --host 0.0.0.0 --port 80
llm:
image: opea/llm-faqgen-vllm:latest
container_name: llm-faqgen-server
depends_on:
- vllm-service
ports:
- "9000:9000"
ipc: host
environment:
no_proxy: ${no_proxy}
http_proxy: ${http_proxy}
https_proxy: ${https_proxy}
vLLM_ENDPOINT: ${vLLM_ENDPOINT}
HUGGINGFACEHUB_API_TOKEN: ${HF_TOKEN}
LLM_MODEL_ID: ${LLM_MODEL_ID}
restart: unless-stopped

networks:
default:
driver: bridge
8 changes: 8 additions & 0 deletions comps/llms/faq-generation/vllm/langchain/entrypoint.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
#!/usr/bin/env bash

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

pip --no-cache-dir install -r requirements-runtime.txt

python llm.py
102 changes: 102 additions & 0 deletions comps/llms/faq-generation/vllm/langchain/llm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import os

from fastapi.responses import StreamingResponse
from langchain.chains.summarize import load_summarize_chain
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplate
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.llms import VLLMOpenAI

from comps import CustomLogger, GeneratedDoc, LLMParamsDoc, ServiceType, opea_microservices, register_microservice
from comps.cores.mega.utils import get_access_token

logger = CustomLogger("llm_faqgen")
logflag = os.getenv("LOGFLAG", False)

# Environment variables
TOKEN_URL = os.getenv("TOKEN_URL")
CLIENTID = os.getenv("CLIENTID")
CLIENT_SECRET = os.getenv("CLIENT_SECRET")


def post_process_text(text: str):
if text == " ":
return "data: @#$\n\n"
if text == "\n":
return "data: <br/>\n\n"
if text.isspace():
return None
new_text = text.replace(" ", "@#$")
return f"data: {new_text}\n\n"


@register_microservice(
name="opea_service@llm_faqgen",
service_type=ServiceType.LLM,
endpoint="/v1/faqgen",
host="0.0.0.0",
port=9000,
)
async def llm_generate(input: LLMParamsDoc):
if logflag:
logger.info(input)
access_token = (
get_access_token(TOKEN_URL, CLIENTID, CLIENT_SECRET) if TOKEN_URL and CLIENTID and CLIENT_SECRET else None
)
headers = {}
if access_token:
headers = {"Authorization": f"Bearer {access_token}"}

model = input.model if input.model else os.getenv("LLM_MODEL_ID")
llm = VLLMOpenAI(
openai_api_key="EMPTY",
openai_api_base=llm_endpoint + "/v1",
model_name=model,
default_headers=headers,
max_tokens=input.max_tokens,
top_p=input.top_p,
streaming=input.streaming,
temperature=input.temperature,
)

templ = """Create a concise FAQs (frequently asked questions and answers) for following text:
TEXT: {text}
Do not use any prefix or suffix to the FAQ.
"""
PROMPT = PromptTemplate.from_template(templ)
llm_chain = load_summarize_chain(llm=llm, prompt=PROMPT)
texts = text_splitter.split_text(input.query)

# Create multiple documents
docs = [Document(page_content=t) for t in texts]

if input.streaming:

async def stream_generator():
from langserve.serialization import WellKnownLCSerializer

_serializer = WellKnownLCSerializer()
async for chunk in llm_chain.astream_log(docs):
data = _serializer.dumps({"ops": chunk.ops}).decode("utf-8")
if logflag:
logger.info(data)
yield f"data: {data}\n\n"
yield "data: [DONE]\n\n"

return StreamingResponse(stream_generator(), media_type="text/event-stream")
else:
response = await llm_chain.ainvoke(docs)
response = response["output_text"]
if logflag:
logger.info(response)
return GeneratedDoc(text=response, prompt=input.query)


if __name__ == "__main__":
llm_endpoint = os.getenv("vLLM_ENDPOINT", "http://localhost:8080")
# Split text
text_splitter = CharacterTextSplitter()
opea_microservices["opea_service@llm_faqgen"].start()
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
langserve
15 changes: 15 additions & 0 deletions comps/llms/faq-generation/vllm/langchain/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
docarray[full]
fastapi
huggingface_hub
langchain
langchain-huggingface
langchain-openai
langchain_community
langchainhub
opentelemetry-api
opentelemetry-exporter-otlp
opentelemetry-sdk
prometheus-fastapi-instrumentator
shortuuid
transformers
uvicorn