Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Please consider apply these two patches #2

Closed
FlyGoat opened this issue Mar 24, 2018 · 0 comments
Closed

Please consider apply these two patches #2

FlyGoat opened this issue Mar 24, 2018 · 0 comments
Assignees

Comments

@FlyGoat
Copy link
Member

FlyGoat commented Mar 24, 2018

好吧。。懒得发PR了。
这两个PR让3AB1000 和 3B1500 在 /proc/cpuinfo 里也能显示mips*r2。避免误导用户态程序。

[1] https://patchwork.linux-mips.org/patch/18910/
[2] https://patchwork.linux-mips.org/patch/18911/

heiher pushed a commit that referenced this issue Mar 28, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Mar 28, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Mar 28, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Mar 28, 2018
When using seg6 in encap mode, we call ipv6_dev_get_saddr() to set the
source address of the outer IPv6 header, in case none was specified.
Using skb->dev can lead to BUG() when it is in an inconsistent state.
This patch uses the net_device attached to the skb's dst instead.

[940807.667429] BUG: unable to handle kernel NULL pointer dereference at 000000000000047c
[940807.762427] IP: ipv6_dev_get_saddr+0x8b/0x1d0
[940807.815725] PGD 0 P4D 0
[940807.847173] Oops: 0000 [#1] SMP PTI
[940807.890073] Modules linked in:
[940807.927765] CPU: 6 PID: 0 Comm: swapper/6 Tainted: G        W        4.16.0-rc1-seg6bpf+ #2
[940808.028988] Hardware name: HP ProLiant DL120 G6/ProLiant DL120 G6, BIOS O26    09/06/2010
[940808.128128] RIP: 0010:ipv6_dev_get_saddr+0x8b/0x1d0
[940808.187667] RSP: 0018:ffff88043fd836b0 EFLAGS: 00010206
[940808.251366] RAX: 0000000000000005 RBX: ffff88042cb1c860 RCX: 00000000000000fe
[940808.338025] RDX: 00000000000002c0 RSI: ffff88042cb1c860 RDI: 0000000000004500
[940808.424683] RBP: ffff88043fd83740 R08: 0000000000000000 R09: ffffffffffffffff
[940808.511342] R10: 0000000000000040 R11: 0000000000000000 R12: ffff88042cb1c850
[940808.598012] R13: ffffffff8208e380 R14: ffff88042ac8da00 R15: 0000000000000002
[940808.684675] FS:  0000000000000000(0000) GS:ffff88043fd80000(0000) knlGS:0000000000000000
[940808.783036] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[940808.852975] CR2: 000000000000047c CR3: 00000004255fe000 CR4: 00000000000006e0
[940808.939634] Call Trace:
[940808.970041]  <IRQ>
[940808.995250]  ? ip6t_do_table+0x265/0x640
[940809.043341]  seg6_do_srh_encap+0x28f/0x300
[940809.093516]  ? seg6_do_srh+0x1a0/0x210
[940809.139528]  seg6_do_srh+0x1a0/0x210
[940809.183462]  seg6_output+0x28/0x1e0
[940809.226358]  lwtunnel_output+0x3f/0x70
[940809.272370]  ip6_xmit+0x2b8/0x530
[940809.313185]  ? ac6_proc_exit+0x20/0x20
[940809.359197]  inet6_csk_xmit+0x7d/0xc0
[940809.404173]  tcp_transmit_skb+0x548/0x9a0
[940809.453304]  __tcp_retransmit_skb+0x1a8/0x7a0
[940809.506603]  ? ip6_default_advmss+0x40/0x40
[940809.557824]  ? tcp_current_mss+0x24/0x90
[940809.605925]  tcp_retransmit_skb+0xd/0x80
[940809.654016]  tcp_xmit_retransmit_queue.part.17+0xf9/0x210
[940809.719797]  tcp_ack+0xa47/0x1110
[940809.760612]  tcp_rcv_established+0x13c/0x570
[940809.812865]  tcp_v6_do_rcv+0x151/0x3d0
[940809.858879]  tcp_v6_rcv+0xa5c/0xb10
[940809.901770]  ? seg6_output+0xdd/0x1e0
[940809.946745]  ip6_input_finish+0xbb/0x460
[940809.994837]  ip6_input+0x74/0x80
[940810.034612]  ? ip6_rcv_finish+0xb0/0xb0
[940810.081663]  ipv6_rcv+0x31c/0x4c0
...

Fixes: 6c8702c ("ipv6: sr: add support for SRH encapsulation and injection with lwtunnels")
Reported-by: Tom Herbert <[email protected]>
Signed-off-by: David Lebrun <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
heiher pushed a commit that referenced this issue Mar 28, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Mar 28, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Mar 28, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Mar 30, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Mar 30, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 3, 2018
syzbot reported a LOCKDEP splat [1] in rt6_age_examine_exception()

rt6_age_examine_exception() is called while rt6_exception_lock is held.
This lock is the lower one in the lock hierarchy, thus we can not
call dst_neigh_lookup() function, as it can fallback to neigh_create()

We should instead do a pure RCU lookup. As a bonus we avoid
a pair of atomic operations on neigh refcount.

[1]

WARNING: possible circular locking dependency detected
4.16.0-rc4+ #277 Not tainted

syz-executor7/4015 is trying to acquire lock:
 (&ndev->lock){++--}, at: [<00000000416dce19>] __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928

but task is already holding lock:
 (&tbl->lock){++-.}, at: [<00000000b5cb1d65>] neigh_ifdown+0x3d/0x250 net/core/neighbour.c:292

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #3 (&tbl->lock){++-.}:
       __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline]
       _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312
       __neigh_create+0x87e/0x1d90 net/core/neighbour.c:528
       neigh_create include/net/neighbour.h:315 [inline]
       ip6_neigh_lookup+0x9a7/0xba0 net/ipv6/route.c:228
       dst_neigh_lookup include/net/dst.h:405 [inline]
       rt6_age_examine_exception net/ipv6/route.c:1609 [inline]
       rt6_age_exceptions+0x381/0x660 net/ipv6/route.c:1645
       fib6_age+0xfb/0x140 net/ipv6/ip6_fib.c:2033
       fib6_clean_node+0x389/0x580 net/ipv6/ip6_fib.c:1919
       fib6_walk_continue+0x46c/0x8a0 net/ipv6/ip6_fib.c:1845
       fib6_walk+0x91/0xf0 net/ipv6/ip6_fib.c:1893
       fib6_clean_tree+0x1e6/0x340 net/ipv6/ip6_fib.c:1970
       __fib6_clean_all+0x1f4/0x3a0 net/ipv6/ip6_fib.c:1986
       fib6_clean_all net/ipv6/ip6_fib.c:1997 [inline]
       fib6_run_gc+0x16b/0x3c0 net/ipv6/ip6_fib.c:2053
       ndisc_netdev_event+0x3c2/0x4a0 net/ipv6/ndisc.c:1781
       notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93
       __raw_notifier_call_chain kernel/notifier.c:394 [inline]
       raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401
       call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707
       call_netdevice_notifiers net/core/dev.c:1725 [inline]
       __dev_notify_flags+0x262/0x430 net/core/dev.c:6960
       dev_change_flags+0xf5/0x140 net/core/dev.c:6994
       devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080
       inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919
       sock_do_ioctl+0xef/0x390 net/socket.c:957
       sock_ioctl+0x36b/0x610 net/socket.c:1081
       vfs_ioctl fs/ioctl.c:46 [inline]
       do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686
       SYSC_ioctl fs/ioctl.c:701 [inline]
       SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692
       do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
       entry_SYSCALL_64_after_hwframe+0x42/0xb7

-> #2 (rt6_exception_lock){+.-.}:
       __raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline]
       _raw_spin_lock_bh+0x31/0x40 kernel/locking/spinlock.c:168
       spin_lock_bh include/linux/spinlock.h:315 [inline]
       rt6_flush_exceptions+0x21/0x210 net/ipv6/route.c:1367
       fib6_del_route net/ipv6/ip6_fib.c:1677 [inline]
       fib6_del+0x624/0x12c0 net/ipv6/ip6_fib.c:1761
       __ip6_del_rt+0xc7/0x120 net/ipv6/route.c:2980
       ip6_del_rt+0x132/0x1a0 net/ipv6/route.c:2993
       __ipv6_dev_ac_dec+0x3b1/0x600 net/ipv6/anycast.c:332
       ipv6_dev_ac_dec net/ipv6/anycast.c:345 [inline]
       ipv6_sock_ac_close+0x2b4/0x3e0 net/ipv6/anycast.c:200
       inet6_release+0x48/0x70 net/ipv6/af_inet6.c:433
       sock_release+0x8d/0x1e0 net/socket.c:594
       sock_close+0x16/0x20 net/socket.c:1149
       __fput+0x327/0x7e0 fs/file_table.c:209
       ____fput+0x15/0x20 fs/file_table.c:243
       task_work_run+0x199/0x270 kernel/task_work.c:113
       exit_task_work include/linux/task_work.h:22 [inline]
       do_exit+0x9bb/0x1ad0 kernel/exit.c:865
       do_group_exit+0x149/0x400 kernel/exit.c:968
       get_signal+0x73a/0x16d0 kernel/signal.c:2469
       do_signal+0x90/0x1e90 arch/x86/kernel/signal.c:809
       exit_to_usermode_loop+0x258/0x2f0 arch/x86/entry/common.c:162
       prepare_exit_to_usermode arch/x86/entry/common.c:196 [inline]
       syscall_return_slowpath arch/x86/entry/common.c:265 [inline]
       do_syscall_64+0x6ec/0x940 arch/x86/entry/common.c:292
       entry_SYSCALL_64_after_hwframe+0x42/0xb7

-> #1 (&(&tb->tb6_lock)->rlock){+.-.}:
       __raw_spin_lock_bh include/linux/spinlock_api_smp.h:135 [inline]
       _raw_spin_lock_bh+0x31/0x40 kernel/locking/spinlock.c:168
       spin_lock_bh include/linux/spinlock.h:315 [inline]
       __ip6_ins_rt+0x56/0x90 net/ipv6/route.c:1007
       ip6_route_add+0x141/0x190 net/ipv6/route.c:2955
       addrconf_prefix_route+0x44f/0x620 net/ipv6/addrconf.c:2359
       fixup_permanent_addr net/ipv6/addrconf.c:3368 [inline]
       addrconf_permanent_addr net/ipv6/addrconf.c:3391 [inline]
       addrconf_notify+0x1ad2/0x2310 net/ipv6/addrconf.c:3460
       notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93
       __raw_notifier_call_chain kernel/notifier.c:394 [inline]
       raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401
       call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707
       call_netdevice_notifiers net/core/dev.c:1725 [inline]
       __dev_notify_flags+0x15d/0x430 net/core/dev.c:6958
       dev_change_flags+0xf5/0x140 net/core/dev.c:6994
       do_setlink+0xa22/0x3bb0 net/core/rtnetlink.c:2357
       rtnl_newlink+0xf37/0x1a50 net/core/rtnetlink.c:2965
       rtnetlink_rcv_msg+0x57f/0xb10 net/core/rtnetlink.c:4641
       netlink_rcv_skb+0x14b/0x380 net/netlink/af_netlink.c:2444
       rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:4659
       netlink_unicast_kernel net/netlink/af_netlink.c:1308 [inline]
       netlink_unicast+0x4c4/0x6b0 net/netlink/af_netlink.c:1334
       netlink_sendmsg+0xa4a/0xe60 net/netlink/af_netlink.c:1897
       sock_sendmsg_nosec net/socket.c:629 [inline]
       sock_sendmsg+0xca/0x110 net/socket.c:639
       ___sys_sendmsg+0x767/0x8b0 net/socket.c:2047
       __sys_sendmsg+0xe5/0x210 net/socket.c:2081
       SYSC_sendmsg net/socket.c:2092 [inline]
       SyS_sendmsg+0x2d/0x50 net/socket.c:2088
       do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
       entry_SYSCALL_64_after_hwframe+0x42/0xb7

-> #0 (&ndev->lock){++--}:
       lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920
       __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline]
       _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312
       __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928
       ipv6_dev_mc_dec+0x110/0x1f0 net/ipv6/mcast.c:961
       pndisc_destructor+0x21a/0x340 net/ipv6/ndisc.c:392
       pneigh_ifdown net/core/neighbour.c:695 [inline]
       neigh_ifdown+0x149/0x250 net/core/neighbour.c:294
       rt6_disable_ip+0x537/0x700 net/ipv6/route.c:3874
       addrconf_ifdown+0x14b/0x14f0 net/ipv6/addrconf.c:3633
       addrconf_notify+0x5f8/0x2310 net/ipv6/addrconf.c:3557
       notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93
       __raw_notifier_call_chain kernel/notifier.c:394 [inline]
       raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401
       call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707
       call_netdevice_notifiers net/core/dev.c:1725 [inline]
       __dev_notify_flags+0x262/0x430 net/core/dev.c:6960
       dev_change_flags+0xf5/0x140 net/core/dev.c:6994
       devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080
       inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919
       packet_ioctl+0x1ff/0x310 net/packet/af_packet.c:4066
       sock_do_ioctl+0xef/0x390 net/socket.c:957
       sock_ioctl+0x36b/0x610 net/socket.c:1081
       vfs_ioctl fs/ioctl.c:46 [inline]
       do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686
       SYSC_ioctl fs/ioctl.c:701 [inline]
       SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692
       do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
       entry_SYSCALL_64_after_hwframe+0x42/0xb7

other info that might help us debug this:

Chain exists of:
  &ndev->lock --> rt6_exception_lock --> &tbl->lock

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(&tbl->lock);
                               lock(rt6_exception_lock);
                               lock(&tbl->lock);
  lock(&ndev->lock);

 *** DEADLOCK ***

2 locks held by syz-executor7/4015:
 #0:  (rtnl_mutex){+.+.}, at: [<00000000a2f16daa>] rtnl_lock+0x17/0x20 net/core/rtnetlink.c:74
 #1:  (&tbl->lock){++-.}, at: [<00000000b5cb1d65>] neigh_ifdown+0x3d/0x250 net/core/neighbour.c:292

stack backtrace:
CPU: 0 PID: 4015 Comm: syz-executor7 Not tainted 4.16.0-rc4+ #277
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
 __dump_stack lib/dump_stack.c:17 [inline]
 dump_stack+0x194/0x24d lib/dump_stack.c:53
 print_circular_bug.isra.38+0x2cd/0x2dc kernel/locking/lockdep.c:1223
 check_prev_add kernel/locking/lockdep.c:1863 [inline]
 check_prevs_add kernel/locking/lockdep.c:1976 [inline]
 validate_chain kernel/locking/lockdep.c:2417 [inline]
 __lock_acquire+0x30a8/0x3e00 kernel/locking/lockdep.c:3431
 lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920
 __raw_write_lock_bh include/linux/rwlock_api_smp.h:203 [inline]
 _raw_write_lock_bh+0x31/0x40 kernel/locking/spinlock.c:312
 __ipv6_dev_mc_dec+0x45/0x350 net/ipv6/mcast.c:928
 ipv6_dev_mc_dec+0x110/0x1f0 net/ipv6/mcast.c:961
 pndisc_destructor+0x21a/0x340 net/ipv6/ndisc.c:392
 pneigh_ifdown net/core/neighbour.c:695 [inline]
 neigh_ifdown+0x149/0x250 net/core/neighbour.c:294
 rt6_disable_ip+0x537/0x700 net/ipv6/route.c:3874
 addrconf_ifdown+0x14b/0x14f0 net/ipv6/addrconf.c:3633
 addrconf_notify+0x5f8/0x2310 net/ipv6/addrconf.c:3557
 notifier_call_chain+0x136/0x2c0 kernel/notifier.c:93
 __raw_notifier_call_chain kernel/notifier.c:394 [inline]
 raw_notifier_call_chain+0x2d/0x40 kernel/notifier.c:401
 call_netdevice_notifiers_info+0x32/0x70 net/core/dev.c:1707
 call_netdevice_notifiers net/core/dev.c:1725 [inline]
 __dev_notify_flags+0x262/0x430 net/core/dev.c:6960
 dev_change_flags+0xf5/0x140 net/core/dev.c:6994
 devinet_ioctl+0x126a/0x1ac0 net/ipv4/devinet.c:1080
 inet_ioctl+0x184/0x310 net/ipv4/af_inet.c:919
 packet_ioctl+0x1ff/0x310 net/packet/af_packet.c:4066
 sock_do_ioctl+0xef/0x390 net/socket.c:957
 sock_ioctl+0x36b/0x610 net/socket.c:1081
 vfs_ioctl fs/ioctl.c:46 [inline]
 do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686
 SYSC_ioctl fs/ioctl.c:701 [inline]
 SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692
 do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
 entry_SYSCALL_64_after_hwframe+0x42/0xb7

Fixes: c757faa ("ipv6: prepare fib6_age() for exception table")
Signed-off-by: Eric Dumazet <[email protected]>
Cc: Wei Wang <[email protected]>
Cc: Martin KaFai Lau <[email protected]>
Acked-by: Wei Wang <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
heiher pushed a commit that referenced this issue Apr 4, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 4, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 8, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 8, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 8, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 8, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 8, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 8, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 9, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 9, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 9, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 9, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 11, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Apr 11, 2018
When booting up with "threadirqs" in command line, all irq handlers of the DMA
controller pl330 will be threaded forcedly. These threads will race for the same
list, pl330->req_done.

Before the callback, the spinlock was released. And after it, the spinlock was
taken. This opened an race window where another threaded irq handler could steal
the spinlock and be permitted to delete entries of the list, pl330->req_done.

If the later deleted an entry that was still referred to by the former, there would
be a kernel panic when the former was scheduled and tried to get the next sibling
of the deleted entry.

The scenario could be depicted as below:

  Thread: T1  pl330->req_done  Thread: T2
      |             |              |
      |          -A-B-C-D-         |
    Locked          |              |
      |             |           Waiting
    Del A           |              |
      |          -B-C-D-           |
    Unlocked        |              |
      |             |           Locked
    Waiting         |              |
      |             |            Del B
      |             |              |
      |           -C-D-         Unlocked
    Waiting         |              |
      |
    Locked
      |
   get C via B
      \
       - Kernel panic

The kernel panic looked like as below:

Unable to handle kernel paging request at virtual address dead000000000108
pgd = ffffff8008c9e000
[dead000000000108] *pgd=000000027fffe003, *pud=000000027fffe003, *pmd=0000000000000000
Internal error: Oops: 96000044 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 85 Comm: irq/59-66330000 Not tainted 4.8.24-WR9.0.0.12_standard #2
Hardware name: Broadcom NS2 SVK (DT)
task: ffffffc1f5cc3c00 task.stack: ffffffc1f5ce0000
PC is at pl330_irq_handler+0x27c/0x390
LR is at pl330_irq_handler+0x2a8/0x390
pc : [<ffffff80084cb694>] lr : [<ffffff80084cb6c0>] pstate: 800001c5
sp : ffffffc1f5ce3d00
x29: ffffffc1f5ce3d00 x28: 0000000000000140
x27: ffffffc1f5c530b0 x26: dead000000000100
x25: dead000000000200 x24: 0000000000418958
x23: 0000000000000001 x22: ffffffc1f5ccd668
x21: ffffffc1f5ccd590 x20: ffffffc1f5ccd418
x19: dead000000000060 x18: 0000000000000001
x17: 0000000000000007 x16: 0000000000000001
x15: ffffffffffffffff x14: ffffffffffffffff
x13: ffffffffffffffff x12: 0000000000000000
x11: 0000000000000001 x10: 0000000000000840
x9 : ffffffc1f5ce0000 x8 : ffffffc1f5cc3338
x7 : ffffff8008ce2020 x6 : 0000000000000000
x5 : 0000000000000000 x4 : 0000000000000001
x3 : dead000000000200 x2 : dead000000000100
x1 : 0000000000000140 x0 : ffffffc1f5ccd590

Process irq/59-66330000 (pid: 85, stack limit = 0xffffffc1f5ce0020)
Stack: (0xffffffc1f5ce3d00 to 0xffffffc1f5ce4000)
3d00: ffffffc1f5ce3d80 ffffff80080f09d0 ffffffc1f5ca0c00 ffffffc1f6f7c600
3d20: ffffffc1f5ce0000 ffffffc1f6f7c600 ffffffc1f5ca0c00 ffffff80080f0998
3d40: ffffffc1f5ce0000 ffffff80080f0000 0000000000000000 0000000000000000
3d60: ffffff8008ce202c ffffff8008ce2020 ffffffc1f5ccd668 ffffffc1f5c530b0
3d80: ffffffc1f5ce3db0 ffffff80080f0d70 ffffffc1f5ca0c40 0000000000000001
3da0: ffffffc1f5ce0000 ffffff80080f0cfc ffffffc1f5ce3e20 ffffff80080bf4f8
3dc0: ffffffc1f5ca0c80 ffffff8008bf3798 ffffff8008955528 ffffffc1f5ca0c00
3de0: ffffff80080f0c30 0000000000000000 0000000000000000 0000000000000000
3e00: 0000000000000000 0000000000000000 0000000000000000 ffffff80080f0b68
3e20: 0000000000000000 ffffff8008083690 ffffff80080bf420 ffffffc1f5ca0c80
3e40: 0000000000000000 0000000000000000 0000000000000000 ffffff80080cb648
3e60: ffffff8008b1c780 0000000000000000 0000000000000000 ffffffc1f5ca0c00
3e80: ffffffc100000000 ffffff8000000000 ffffffc1f5ce3e90 ffffffc1f5ce3e90
3ea0: 0000000000000000 ffffff8000000000 ffffffc1f5ce3eb0 ffffffc1f5ce3eb0
3ec0: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
3ee0: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
3f00: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
3f20: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
3f40: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
3f60: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
3f80: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
3fa0: 0000000000000000 0000000000000000 0000000000000000 0000000000000000
3fc0: 0000000000000000 0000000000000005 0000000000000000 0000000000000000
3fe0: 0000000000000000 0000000000000000 0000000275ce3ff0 0000000275ce3ff8
Call trace:
Exception stack(0xffffffc1f5ce3b30 to 0xffffffc1f5ce3c60)
3b20:                                   dead000000000060 0000008000000000
3b40: ffffffc1f5ce3d00 ffffff80084cb694 0000000000000008 0000000000000e88
3b60: ffffffc1f5ce3bb0 ffffff80080dac68 ffffffc1f5ce3b90 ffffff8008826fe4
3b80: 00000000000001c0 00000000000001c0 ffffffc1f5ce3bb0 ffffff800848dfcc
3ba0: 0000000000020000 ffffff8008b15ae4 ffffffc1f5ce3c00 ffffff800808f000
3bc0: 0000000000000010 ffffff80088377f0 ffffffc1f5ccd590 0000000000000140
3be0: dead000000000100 dead000000000200 0000000000000001 0000000000000000
3c00: 0000000000000000 ffffff8008ce2020 ffffffc1f5cc3338 ffffffc1f5ce0000
3c20: 0000000000000840 0000000000000001 0000000000000000 ffffffffffffffff
3c40: ffffffffffffffff ffffffffffffffff 0000000000000001 0000000000000007
[<ffffff80084cb694>] pl330_irq_handler+0x27c/0x390
[<ffffff80080f09d0>] irq_forced_thread_fn+0x38/0x88
[<ffffff80080f0d70>] irq_thread+0x140/0x200
[<ffffff80080bf4f8>] kthread+0xd8/0xf0
[<ffffff8008083690>] ret_from_fork+0x10/0x40
Code: f2a00838 f9405763 aa1c03e1 aa1503e0 (f9000443)
---[ end trace f50005726d31199c ]---
Kernel panic - not syncing: Fatal exception in interrupt
SMP: stopping secondary CPUs
SMP: failed to stop secondary CPUs 0-1
Kernel Offset: disabled
Memory Limit: none
---[ end Kernel panic - not syncing: Fatal exception in interrupt

To fix this, re-start with the list-head after dropping the lock then
re-takeing it.

Reviewed-by: Frank Mori Hess <[email protected]>
Tested-by: Frank Mori Hess <[email protected]>
Signed-off-by: Qi Hou <[email protected]>
Signed-off-by: Vinod Koul <[email protected]>
heiher pushed a commit that referenced this issue Apr 11, 2018
This patch fixes a bug, that prevents the Allwinner A83T and the A80
from a successful boot.

The bug is there since v4.16-rc1 and appeared after the clk branch was
merged.

You can find the shortend trace below:

Unable to handle kernel NULL pointer dereference at virtual address
00000000
pgd = (ptrval)
[00000000] *pgd=00000000
Internal error: Oops: 5 [#1] SMP ARM
Modules linked in:
CPU: 0 PID: 49 Comm: kworker/0:1 Not tainted 4.15.0-10190-gb89e32ccd1be #2
Hardware name: Allwinner sun8i Family
Workqueue: events deferred_probe_work_func
PC is at clk_hw_get_rate+0x0/0x34
LR is at ac100_clkout_determine_rate+0x48/0x19c

[ ... ]

(clk_hw_get_rate) from (ac100_clkout_determine_rate+0x48/0x19c)
(ac100_clkout_determine_rate) from  (clk_core_set_rate_nolock+0x3c/0x1a0)
(clk_core_set_rate_nolock) from (clk_set_rate+0x30/0x88)
(clk_set_rate) from (of_clk_set_defaults+0x200/0x364)
(of_clk_set_defaults) from (platform_drv_probe+0x18/0xb0)

To fix that bug, we first check if the return of the
clk_hw_get_parent_by_index is non zero. If it is zero we skip that
clock parent.

The BUG report could be found here: https://lkml.org/lkml/2018/2/10/198

Fixes: 0494063 ("rtc: ac100: Add clk output support")

Signed-off-by: Philipp Rossak <[email protected]>
Acked-by: Maxime Ripard <[email protected]>
Signed-off-by: Alexandre Belloni <[email protected]>
heiher pushed a commit that referenced this issue Apr 11, 2018
Add a header with macros usable in assembler files to emit alternative
code sequences. It works analog to the alternatives for inline assmeblies
in C files, with the same restrictions and capabilities.
The syntax is

     ALTERNATIVE "<default instructions sequence>", \
		 "<alternative instructions sequence>", \
		 "<features-bit>"
and

     ALTERNATIVE_2 "<default instructions sequence>", \
		   "<alternative instructions sqeuence #1>", \
		   "<feature-bit #1>",
		   "<alternative instructions sqeuence #2>", \
		   "<feature-bit #2>"

Reviewed-by: Vasily Gorbik <[email protected]>
Signed-off-by: Martin Schwidefsky <[email protected]>
heiher pushed a commit that referenced this issue Apr 13, 2018
Currently vhost *_access_ok() functions return int.  This is error-prone
because there are two popular conventions:

1. 0 means failure, 1 means success
2. -errno means failure, 0 means success

Although vhost mostly uses #1, it does not do so consistently.
umem_access_ok() uses #2.

This patch changes the return type from int to bool so that false means
failure and true means success.  This eliminates a potential source of
errors.

Suggested-by: Linus Torvalds <[email protected]>
Signed-off-by: Stefan Hajnoczi <[email protected]>
Acked-by: Michael S. Tsirkin <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
heiher pushed a commit that referenced this issue Apr 13, 2018
Guillaume Nault says:

====================
l2tp: tunnel creation fixes

L2TP tunnel creation is racy. We need to make sure that the tunnel
returned by l2tp_tunnel_create() isn't going to be freed while the
caller is using it. This is done in patch #1, by separating tunnel
creation from tunnel registration.

With the tunnel registration code in place, we can now check for
duplicate tunnels in a race-free way. This is done in patch #2, which
incidentally removes the last use of l2tp_tunnel_find().
====================

Signed-off-by: David S. Miller <[email protected]>
heiher pushed a commit that referenced this issue Apr 13, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 18, 2018
The current MIPS implementation of arch_trigger_cpumask_backtrace() is
broken because it attempts to use synchronous IPIs despite the fact that
it may be run with interrupts disabled.

This means that when arch_trigger_cpumask_backtrace() is invoked, for
example by the RCU CPU stall watchdog, we may:

  - Deadlock due to use of synchronous IPIs with interrupts disabled,
    causing the CPU that's attempting to generate the backtrace output
    to hang itself.

  - Not succeed in generating the desired output from remote CPUs.

  - Produce warnings about this from smp_call_function_many(), for
    example:

    [42760.526910] INFO: rcu_sched detected stalls on CPUs/tasks:
    [42760.535755]  0-...!: (1 GPs behind) idle=ade/140000000000000/0 softirq=526944/526945 fqs=0
    [42760.547874]  1-...!: (0 ticks this GP) idle=e4a/140000000000000/0 softirq=547885/547885 fqs=0
    [42760.559869]  (detected by 2, t=2162 jiffies, g=266689, c=266688, q=33)
    [42760.568927] ------------[ cut here ]------------
    [42760.576146] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:416 smp_call_function_many+0x88/0x20c
    [42760.587839] Modules linked in:
    [42760.593152] CPU: 2 PID: 1216 Comm: sh Not tainted 4.15.4-00373-gee058bb4d0c2 #2
    [42760.603767] Stack : 8e09bd20 8e09bd20 8e09bd20 fffffff0 00000007 00000006 00000000 8e09bca8
    [42760.616937]         95b2b379 95b2b379 807a0080 00000007 81944518 0000018a 00000032 00000000
    [42760.630095]         00000000 00000030 80000000 00000000 806eca74 00000009 8017e2b8 000001a0
    [42760.643169]         00000000 00000002 00000000 8e09baa4 00000008 808b8008 86d69080 8e09bca0
    [42760.656282]         8e09ad50 805e20aa 00000000 00000000 00000000 8017e2b8 00000009 801070ca
    [42760.669424]         ...
    [42760.673919] Call Trace:
    [42760.678672] [<27fde568>] show_stack+0x70/0xf0
    [42760.685417] [<84751641>] dump_stack+0xaa/0xd0
    [42760.692188] [<699d671c>] __warn+0x80/0x92
    [42760.698549] [<68915d41>] warn_slowpath_null+0x28/0x36
    [42760.705912] [<f7c76c1c>] smp_call_function_many+0x88/0x20c
    [42760.713696] [<6bbdfc2a>] arch_trigger_cpumask_backtrace+0x30/0x4a
    [42760.722216] [<f845bd33>] rcu_dump_cpu_stacks+0x6a/0x98
    [42760.729580] [<796e7629>] rcu_check_callbacks+0x672/0x6ac
    [42760.737476] [<059b3b43>] update_process_times+0x18/0x34
    [42760.744981] [<6eb94941>] tick_sched_handle.isra.5+0x26/0x38
    [42760.752793] [<478d3d70>] tick_sched_timer+0x1c/0x50
    [42760.759882] [<e56ea39f>] __hrtimer_run_queues+0xc6/0x226
    [42760.767418] [<e88bbcae>] hrtimer_interrupt+0x88/0x19a
    [42760.775031] [<6765a19e>] gic_compare_interrupt+0x2e/0x3a
    [42760.782761] [<0558bf5f>] handle_percpu_devid_irq+0x78/0x168
    [42760.790795] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
    [42760.798117] [<1b6d462c>] gic_handle_local_int+0x38/0x86
    [42760.805545] [<b2ada1c7>] gic_irq_dispatch+0xa/0x14
    [42760.812534] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
    [42760.820086] [<c7521934>] do_IRQ+0x16/0x20
    [42760.826274] [<9aef3ce6>] plat_irq_dispatch+0x62/0x94
    [42760.833458] [<6a94b53c>] except_vec_vi_end+0x70/0x78
    [42760.840655] [<22284043>] smp_call_function_many+0x1ba/0x20c
    [42760.848501] [<54022b58>] smp_call_function+0x1e/0x2c
    [42760.855693] [<ab9fc705>] flush_tlb_mm+0x2a/0x98
    [42760.862730] [<0844cdd0>] tlb_flush_mmu+0x1c/0x44
    [42760.869628] [<cb259b74>] arch_tlb_finish_mmu+0x26/0x3e
    [42760.877021] [<1aeaaf74>] tlb_finish_mmu+0x18/0x66
    [42760.883907] [<b3fce717>] exit_mmap+0x76/0xea
    [42760.890428] [<c4c8a2f6>] mmput+0x80/0x11a
    [42760.896632] [<a41a08f4>] do_exit+0x1f4/0x80c
    [42760.903158] [<ee01cef6>] do_group_exit+0x20/0x7e
    [42760.909990] [<13fa8d54>] __wake_up_parent+0x0/0x1e
    [42760.917045] [<46cf89d0>] smp_call_function_many+0x1a2/0x20c
    [42760.924893] [<8c21a93b>] syscall_common+0x14/0x1c
    [42760.931765] ---[ end trace 02aa09da9dc52a60 ]---
    [42760.938342] ------------[ cut here ]------------
    [42760.945311] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:291 smp_call_function_single+0xee/0xf8
    ...

This patch switches MIPS' arch_trigger_cpumask_backtrace() to use async
IPIs & smp_call_function_single_async() in order to resolve this
problem. We ensure use of the pre-allocated call_single_data_t
structures is serialized by maintaining a cpumask indicating that
they're busy, and refusing to attempt to send an IPI when a CPU's bit is
set in this mask. This should only happen if a CPU hasn't responded to a
previous backtrace IPI - ie. if it's hung - and we print a warning to
the console in this case.

I've marked this for stable branches as far back as v4.9, to which it
applies cleanly. Strictly speaking the faulty MIPS implementation can be
traced further back to commit 856839b ("MIPS: Add
arch_trigger_all_cpu_backtrace() function") in v3.19, but kernel
versions v3.19 through v4.8 will require further work to backport due to
the rework performed in commit 9a01c3e ("nmi_backtrace: add more
trigger_*_cpu_backtrace() methods").

Signed-off-by: Paul Burton <[email protected]>
Patchwork: https://patchwork.linux-mips.org/patch/19597/
Cc: James Hogan <[email protected]>
Cc: Ralf Baechle <[email protected]>
Cc: [email protected]
Cc: [email protected]
Fixes: 856839b ("MIPS: Add arch_trigger_all_cpu_backtrace() function")
Fixes: 9a01c3e ("nmi_backtrace: add more trigger_*_cpu_backtrace() methods")
[ Huacai: backported to 4.9: Replace "call_single_data_t" with "struct call_single_data" ]
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 21, 2018
commit b63e132 upstream.

The current MIPS implementation of arch_trigger_cpumask_backtrace() is
broken because it attempts to use synchronous IPIs despite the fact that
it may be run with interrupts disabled.

This means that when arch_trigger_cpumask_backtrace() is invoked, for
example by the RCU CPU stall watchdog, we may:

  - Deadlock due to use of synchronous IPIs with interrupts disabled,
    causing the CPU that's attempting to generate the backtrace output
    to hang itself.

  - Not succeed in generating the desired output from remote CPUs.

  - Produce warnings about this from smp_call_function_many(), for
    example:

    [42760.526910] INFO: rcu_sched detected stalls on CPUs/tasks:
    [42760.535755]  0-...!: (1 GPs behind) idle=ade/140000000000000/0 softirq=526944/526945 fqs=0
    [42760.547874]  1-...!: (0 ticks this GP) idle=e4a/140000000000000/0 softirq=547885/547885 fqs=0
    [42760.559869]  (detected by 2, t=2162 jiffies, g=266689, c=266688, q=33)
    [42760.568927] ------------[ cut here ]------------
    [42760.576146] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:416 smp_call_function_many+0x88/0x20c
    [42760.587839] Modules linked in:
    [42760.593152] CPU: 2 PID: 1216 Comm: sh Not tainted 4.15.4-00373-gee058bb4d0c2 #2
    [42760.603767] Stack : 8e09bd20 8e09bd20 8e09bd20 fffffff0 00000007 00000006 00000000 8e09bca8
    [42760.616937]         95b2b379 95b2b379 807a0080 00000007 81944518 0000018a 00000032 00000000
    [42760.630095]         00000000 00000030 80000000 00000000 806eca74 00000009 8017e2b8 000001a0
    [42760.643169]         00000000 00000002 00000000 8e09baa4 00000008 808b8008 86d69080 8e09bca0
    [42760.656282]         8e09ad50 805e20aa 00000000 00000000 00000000 8017e2b8 00000009 801070ca
    [42760.669424]         ...
    [42760.673919] Call Trace:
    [42760.678672] [<27fde568>] show_stack+0x70/0xf0
    [42760.685417] [<84751641>] dump_stack+0xaa/0xd0
    [42760.692188] [<699d671c>] __warn+0x80/0x92
    [42760.698549] [<68915d41>] warn_slowpath_null+0x28/0x36
    [42760.705912] [<f7c76c1c>] smp_call_function_many+0x88/0x20c
    [42760.713696] [<6bbdfc2a>] arch_trigger_cpumask_backtrace+0x30/0x4a
    [42760.722216] [<f845bd33>] rcu_dump_cpu_stacks+0x6a/0x98
    [42760.729580] [<796e7629>] rcu_check_callbacks+0x672/0x6ac
    [42760.737476] [<059b3b43>] update_process_times+0x18/0x34
    [42760.744981] [<6eb94941>] tick_sched_handle.isra.5+0x26/0x38
    [42760.752793] [<478d3d70>] tick_sched_timer+0x1c/0x50
    [42760.759882] [<e56ea39f>] __hrtimer_run_queues+0xc6/0x226
    [42760.767418] [<e88bbcae>] hrtimer_interrupt+0x88/0x19a
    [42760.775031] [<6765a19e>] gic_compare_interrupt+0x2e/0x3a
    [42760.782761] [<0558bf5f>] handle_percpu_devid_irq+0x78/0x168
    [42760.790795] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
    [42760.798117] [<1b6d462c>] gic_handle_local_int+0x38/0x86
    [42760.805545] [<b2ada1c7>] gic_irq_dispatch+0xa/0x14
    [42760.812534] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
    [42760.820086] [<c7521934>] do_IRQ+0x16/0x20
    [42760.826274] [<9aef3ce6>] plat_irq_dispatch+0x62/0x94
    [42760.833458] [<6a94b53c>] except_vec_vi_end+0x70/0x78
    [42760.840655] [<22284043>] smp_call_function_many+0x1ba/0x20c
    [42760.848501] [<54022b58>] smp_call_function+0x1e/0x2c
    [42760.855693] [<ab9fc705>] flush_tlb_mm+0x2a/0x98
    [42760.862730] [<0844cdd0>] tlb_flush_mmu+0x1c/0x44
    [42760.869628] [<cb259b74>] arch_tlb_finish_mmu+0x26/0x3e
    [42760.877021] [<1aeaaf74>] tlb_finish_mmu+0x18/0x66
    [42760.883907] [<b3fce717>] exit_mmap+0x76/0xea
    [42760.890428] [<c4c8a2f6>] mmput+0x80/0x11a
    [42760.896632] [<a41a08f4>] do_exit+0x1f4/0x80c
    [42760.903158] [<ee01cef6>] do_group_exit+0x20/0x7e
    [42760.909990] [<13fa8d54>] __wake_up_parent+0x0/0x1e
    [42760.917045] [<46cf89d0>] smp_call_function_many+0x1a2/0x20c
    [42760.924893] [<8c21a93b>] syscall_common+0x14/0x1c
    [42760.931765] ---[ end trace 02aa09da9dc52a60 ]---
    [42760.938342] ------------[ cut here ]------------
    [42760.945311] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:291 smp_call_function_single+0xee/0xf8
    ...

This patch switches MIPS' arch_trigger_cpumask_backtrace() to use async
IPIs & smp_call_function_single_async() in order to resolve this
problem. We ensure use of the pre-allocated call_single_data_t
structures is serialized by maintaining a cpumask indicating that
they're busy, and refusing to attempt to send an IPI when a CPU's bit is
set in this mask. This should only happen if a CPU hasn't responded to a
previous backtrace IPI - ie. if it's hung - and we print a warning to
the console in this case.

I've marked this for stable branches as far back as v4.9, to which it
applies cleanly. Strictly speaking the faulty MIPS implementation can be
traced further back to commit 856839b ("MIPS: Add
arch_trigger_all_cpu_backtrace() function") in v3.19, but kernel
versions v3.19 through v4.8 will require further work to backport due to
the rework performed in commit 9a01c3e ("nmi_backtrace: add more
trigger_*_cpu_backtrace() methods").

Signed-off-by: Paul Burton <[email protected]>
Patchwork: https://patchwork.linux-mips.org/patch/19597/
Cc: James Hogan <[email protected]>
Cc: Ralf Baechle <[email protected]>
Cc: [email protected]
Cc: [email protected]
Fixes: 856839b ("MIPS: Add arch_trigger_all_cpu_backtrace() function")
Fixes: 9a01c3e ("nmi_backtrace: add more trigger_*_cpu_backtrace() methods")
[ Huacai: backported to 4.4: Restruction since generic NMI solution is unavailable ]
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 21, 2018
My recent fix for dns_resolver_preparse() printing very long strings was
incomplete, as shown by syzbot which still managed to hit the
WARN_ONCE() in set_precision() by adding a crafted "dns_resolver" key:

    precision 50001 too large
    WARNING: CPU: 7 PID: 864 at lib/vsprintf.c:2164 vsnprintf+0x48a/0x5a0

The bug this time isn't just a printing bug, but also a logical error
when multiple options ("#"-separated strings) are given in the key
payload.  Specifically, when separating an option string into name and
value, if there is no value then the name is incorrectly considered to
end at the end of the key payload, rather than the end of the current
option.  This bypasses validation of the option length, and also means
that specifying multiple options is broken -- which presumably has gone
unnoticed as there is currently only one valid option anyway.

A similar problem also applied to option values, as the kstrtoul() when
parsing the "dnserror" option will read past the end of the current
option and into the next option.

Fix these bugs by correctly computing the length of the option name and
by copying the option value, null-terminated, into a temporary buffer.

Reproducer for the WARN_ONCE() that syzbot hit:

    perl -e 'print "#A#", "\0" x 50000' | keyctl padd dns_resolver desc @s

Reproducer for "dnserror" option being parsed incorrectly (expected
behavior is to fail when seeing the unknown option "foo", actual
behavior was to read the dnserror value as "1#foo" and fail there):

    perl -e 'print "#dnserror=1#foo\0"' | keyctl padd dns_resolver desc @s

Reported-by: syzbot <[email protected]>
Fixes: 4a2d789 ("DNS: If the DNS server returns an error, allow that to be cached [ver #2]")
Signed-off-by: Eric Biggers <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
heiher pushed a commit that referenced this issue Jul 21, 2018
The current MIPS implementation of arch_trigger_cpumask_backtrace() is
broken because it attempts to use synchronous IPIs despite the fact that
it may be run with interrupts disabled.

This means that when arch_trigger_cpumask_backtrace() is invoked, for
example by the RCU CPU stall watchdog, we may:

  - Deadlock due to use of synchronous IPIs with interrupts disabled,
    causing the CPU that's attempting to generate the backtrace output
    to hang itself.

  - Not succeed in generating the desired output from remote CPUs.

  - Produce warnings about this from smp_call_function_many(), for
    example:

    [42760.526910] INFO: rcu_sched detected stalls on CPUs/tasks:
    [42760.535755]  0-...!: (1 GPs behind) idle=ade/140000000000000/0 softirq=526944/526945 fqs=0
    [42760.547874]  1-...!: (0 ticks this GP) idle=e4a/140000000000000/0 softirq=547885/547885 fqs=0
    [42760.559869]  (detected by 2, t=2162 jiffies, g=266689, c=266688, q=33)
    [42760.568927] ------------[ cut here ]------------
    [42760.576146] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:416 smp_call_function_many+0x88/0x20c
    [42760.587839] Modules linked in:
    [42760.593152] CPU: 2 PID: 1216 Comm: sh Not tainted 4.15.4-00373-gee058bb4d0c2 #2
    [42760.603767] Stack : 8e09bd20 8e09bd20 8e09bd20 fffffff0 00000007 00000006 00000000 8e09bca8
    [42760.616937]         95b2b379 95b2b379 807a0080 00000007 81944518 0000018a 00000032 00000000
    [42760.630095]         00000000 00000030 80000000 00000000 806eca74 00000009 8017e2b8 000001a0
    [42760.643169]         00000000 00000002 00000000 8e09baa4 00000008 808b8008 86d69080 8e09bca0
    [42760.656282]         8e09ad50 805e20aa 00000000 00000000 00000000 8017e2b8 00000009 801070ca
    [42760.669424]         ...
    [42760.673919] Call Trace:
    [42760.678672] [<27fde568>] show_stack+0x70/0xf0
    [42760.685417] [<84751641>] dump_stack+0xaa/0xd0
    [42760.692188] [<699d671c>] __warn+0x80/0x92
    [42760.698549] [<68915d41>] warn_slowpath_null+0x28/0x36
    [42760.705912] [<f7c76c1c>] smp_call_function_many+0x88/0x20c
    [42760.713696] [<6bbdfc2a>] arch_trigger_cpumask_backtrace+0x30/0x4a
    [42760.722216] [<f845bd33>] rcu_dump_cpu_stacks+0x6a/0x98
    [42760.729580] [<796e7629>] rcu_check_callbacks+0x672/0x6ac
    [42760.737476] [<059b3b43>] update_process_times+0x18/0x34
    [42760.744981] [<6eb94941>] tick_sched_handle.isra.5+0x26/0x38
    [42760.752793] [<478d3d70>] tick_sched_timer+0x1c/0x50
    [42760.759882] [<e56ea39f>] __hrtimer_run_queues+0xc6/0x226
    [42760.767418] [<e88bbcae>] hrtimer_interrupt+0x88/0x19a
    [42760.775031] [<6765a19e>] gic_compare_interrupt+0x2e/0x3a
    [42760.782761] [<0558bf5f>] handle_percpu_devid_irq+0x78/0x168
    [42760.790795] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
    [42760.798117] [<1b6d462c>] gic_handle_local_int+0x38/0x86
    [42760.805545] [<b2ada1c7>] gic_irq_dispatch+0xa/0x14
    [42760.812534] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
    [42760.820086] [<c7521934>] do_IRQ+0x16/0x20
    [42760.826274] [<9aef3ce6>] plat_irq_dispatch+0x62/0x94
    [42760.833458] [<6a94b53c>] except_vec_vi_end+0x70/0x78
    [42760.840655] [<22284043>] smp_call_function_many+0x1ba/0x20c
    [42760.848501] [<54022b58>] smp_call_function+0x1e/0x2c
    [42760.855693] [<ab9fc705>] flush_tlb_mm+0x2a/0x98
    [42760.862730] [<0844cdd0>] tlb_flush_mmu+0x1c/0x44
    [42760.869628] [<cb259b74>] arch_tlb_finish_mmu+0x26/0x3e
    [42760.877021] [<1aeaaf74>] tlb_finish_mmu+0x18/0x66
    [42760.883907] [<b3fce717>] exit_mmap+0x76/0xea
    [42760.890428] [<c4c8a2f6>] mmput+0x80/0x11a
    [42760.896632] [<a41a08f4>] do_exit+0x1f4/0x80c
    [42760.903158] [<ee01cef6>] do_group_exit+0x20/0x7e
    [42760.909990] [<13fa8d54>] __wake_up_parent+0x0/0x1e
    [42760.917045] [<46cf89d0>] smp_call_function_many+0x1a2/0x20c
    [42760.924893] [<8c21a93b>] syscall_common+0x14/0x1c
    [42760.931765] ---[ end trace 02aa09da9dc52a60 ]---
    [42760.938342] ------------[ cut here ]------------
    [42760.945311] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:291 smp_call_function_single+0xee/0xf8
    ...

This patch switches MIPS' arch_trigger_cpumask_backtrace() to use async
IPIs & smp_call_function_single_async() in order to resolve this
problem. We ensure use of the pre-allocated call_single_data_t
structures is serialized by maintaining a cpumask indicating that
they're busy, and refusing to attempt to send an IPI when a CPU's bit is
set in this mask. This should only happen if a CPU hasn't responded to a
previous backtrace IPI - ie. if it's hung - and we print a warning to
the console in this case.

I've marked this for stable branches as far back as v4.9, to which it
applies cleanly. Strictly speaking the faulty MIPS implementation can be
traced further back to commit 856839b ("MIPS: Add
arch_trigger_all_cpu_backtrace() function") in v3.19, but kernel
versions v3.19 through v4.8 will require further work to backport due to
the rework performed in commit 9a01c3e ("nmi_backtrace: add more
trigger_*_cpu_backtrace() methods").

Signed-off-by: Paul Burton <[email protected]>
Patchwork: https://patchwork.linux-mips.org/patch/19597/
Cc: James Hogan <[email protected]>
Cc: Ralf Baechle <[email protected]>
Cc: [email protected]
Cc: [email protected]
Fixes: 856839b ("MIPS: Add arch_trigger_all_cpu_backtrace() function")
Fixes: 9a01c3e ("nmi_backtrace: add more trigger_*_cpu_backtrace() methods")
[ Huacai: backported to 4.4: Restruction since generic NMI solution is unavailable ]
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 21, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 25, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 25, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 25, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 25, 2018
The current MIPS implementation of arch_trigger_cpumask_backtrace() is
broken because it attempts to use synchronous IPIs despite the fact that
it may be run with interrupts disabled.

This means that when arch_trigger_cpumask_backtrace() is invoked, for
example by the RCU CPU stall watchdog, we may:

  - Deadlock due to use of synchronous IPIs with interrupts disabled,
    causing the CPU that's attempting to generate the backtrace output
    to hang itself.

  - Not succeed in generating the desired output from remote CPUs.

  - Produce warnings about this from smp_call_function_many(), for
    example:

    [42760.526910] INFO: rcu_sched detected stalls on CPUs/tasks:
    [42760.535755]  0-...!: (1 GPs behind) idle=ade/140000000000000/0 softirq=526944/526945 fqs=0
    [42760.547874]  1-...!: (0 ticks this GP) idle=e4a/140000000000000/0 softirq=547885/547885 fqs=0
    [42760.559869]  (detected by 2, t=2162 jiffies, g=266689, c=266688, q=33)
    [42760.568927] ------------[ cut here ]------------
    [42760.576146] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:416 smp_call_function_many+0x88/0x20c
    [42760.587839] Modules linked in:
    [42760.593152] CPU: 2 PID: 1216 Comm: sh Not tainted 4.15.4-00373-gee058bb4d0c2 #2
    [42760.603767] Stack : 8e09bd20 8e09bd20 8e09bd20 fffffff0 00000007 00000006 00000000 8e09bca8
    [42760.616937]         95b2b379 95b2b379 807a0080 00000007 81944518 0000018a 00000032 00000000
    [42760.630095]         00000000 00000030 80000000 00000000 806eca74 00000009 8017e2b8 000001a0
    [42760.643169]         00000000 00000002 00000000 8e09baa4 00000008 808b8008 86d69080 8e09bca0
    [42760.656282]         8e09ad50 805e20aa 00000000 00000000 00000000 8017e2b8 00000009 801070ca
    [42760.669424]         ...
    [42760.673919] Call Trace:
    [42760.678672] [<27fde568>] show_stack+0x70/0xf0
    [42760.685417] [<84751641>] dump_stack+0xaa/0xd0
    [42760.692188] [<699d671c>] __warn+0x80/0x92
    [42760.698549] [<68915d41>] warn_slowpath_null+0x28/0x36
    [42760.705912] [<f7c76c1c>] smp_call_function_many+0x88/0x20c
    [42760.713696] [<6bbdfc2a>] arch_trigger_cpumask_backtrace+0x30/0x4a
    [42760.722216] [<f845bd33>] rcu_dump_cpu_stacks+0x6a/0x98
    [42760.729580] [<796e7629>] rcu_check_callbacks+0x672/0x6ac
    [42760.737476] [<059b3b43>] update_process_times+0x18/0x34
    [42760.744981] [<6eb94941>] tick_sched_handle.isra.5+0x26/0x38
    [42760.752793] [<478d3d70>] tick_sched_timer+0x1c/0x50
    [42760.759882] [<e56ea39f>] __hrtimer_run_queues+0xc6/0x226
    [42760.767418] [<e88bbcae>] hrtimer_interrupt+0x88/0x19a
    [42760.775031] [<6765a19e>] gic_compare_interrupt+0x2e/0x3a
    [42760.782761] [<0558bf5f>] handle_percpu_devid_irq+0x78/0x168
    [42760.790795] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
    [42760.798117] [<1b6d462c>] gic_handle_local_int+0x38/0x86
    [42760.805545] [<b2ada1c7>] gic_irq_dispatch+0xa/0x14
    [42760.812534] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
    [42760.820086] [<c7521934>] do_IRQ+0x16/0x20
    [42760.826274] [<9aef3ce6>] plat_irq_dispatch+0x62/0x94
    [42760.833458] [<6a94b53c>] except_vec_vi_end+0x70/0x78
    [42760.840655] [<22284043>] smp_call_function_many+0x1ba/0x20c
    [42760.848501] [<54022b58>] smp_call_function+0x1e/0x2c
    [42760.855693] [<ab9fc705>] flush_tlb_mm+0x2a/0x98
    [42760.862730] [<0844cdd0>] tlb_flush_mmu+0x1c/0x44
    [42760.869628] [<cb259b74>] arch_tlb_finish_mmu+0x26/0x3e
    [42760.877021] [<1aeaaf74>] tlb_finish_mmu+0x18/0x66
    [42760.883907] [<b3fce717>] exit_mmap+0x76/0xea
    [42760.890428] [<c4c8a2f6>] mmput+0x80/0x11a
    [42760.896632] [<a41a08f4>] do_exit+0x1f4/0x80c
    [42760.903158] [<ee01cef6>] do_group_exit+0x20/0x7e
    [42760.909990] [<13fa8d54>] __wake_up_parent+0x0/0x1e
    [42760.917045] [<46cf89d0>] smp_call_function_many+0x1a2/0x20c
    [42760.924893] [<8c21a93b>] syscall_common+0x14/0x1c
    [42760.931765] ---[ end trace 02aa09da9dc52a60 ]---
    [42760.938342] ------------[ cut here ]------------
    [42760.945311] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:291 smp_call_function_single+0xee/0xf8
    ...

This patch switches MIPS' arch_trigger_cpumask_backtrace() to use async
IPIs & smp_call_function_single_async() in order to resolve this
problem. We ensure use of the pre-allocated call_single_data_t
structures is serialized by maintaining a cpumask indicating that
they're busy, and refusing to attempt to send an IPI when a CPU's bit is
set in this mask. This should only happen if a CPU hasn't responded to a
previous backtrace IPI - ie. if it's hung - and we print a warning to
the console in this case.

I've marked this for stable branches as far back as v4.9, to which it
applies cleanly. Strictly speaking the faulty MIPS implementation can be
traced further back to commit 856839b ("MIPS: Add
arch_trigger_all_cpu_backtrace() function") in v3.19, but kernel
versions v3.19 through v4.8 will require further work to backport due to
the rework performed in commit 9a01c3e ("nmi_backtrace: add more
trigger_*_cpu_backtrace() methods").

Signed-off-by: Paul Burton <[email protected]>
Patchwork: https://patchwork.linux-mips.org/patch/19597/
Cc: James Hogan <[email protected]>
Cc: Ralf Baechle <[email protected]>
Cc: [email protected]
Cc: [email protected]
Fixes: 856839b ("MIPS: Add arch_trigger_all_cpu_backtrace() function")
Fixes: 9a01c3e ("nmi_backtrace: add more trigger_*_cpu_backtrace() methods")
[ Huacai: backported to 4.4: Restruction since generic NMI solution is unavailable ]
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 25, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 25, 2018
Crash dump shows following instructions

crash> bt
PID: 0      TASK: ffffffffbe412480  CPU: 0   COMMAND: "swapper/0"
 #0 [ffff891ee0003868] machine_kexec at ffffffffbd063ef1
 #1 [ffff891ee00038c8] __crash_kexec at ffffffffbd12b6f2
 #2 [ffff891ee0003998] crash_kexec at ffffffffbd12c84c
 #3 [ffff891ee00039b8] oops_end at ffffffffbd030f0a
 #4 [ffff891ee00039e0] no_context at ffffffffbd074643
 #5 [ffff891ee0003a40] __bad_area_nosemaphore at ffffffffbd07496e
 #6 [ffff891ee0003a90] bad_area_nosemaphore at ffffffffbd074a64
 #7 [ffff891ee0003aa0] __do_page_fault at ffffffffbd074b0a
 #8 [ffff891ee0003b18] do_page_fault at ffffffffbd074fc8
 #9 [ffff891ee0003b50] page_fault at ffffffffbda01925
    [exception RIP: qlt_schedule_sess_for_deletion+15]
    RIP: ffffffffc02e526f  RSP: ffff891ee0003c08  RFLAGS: 00010046
    RAX: 0000000000000000  RBX: 0000000000000000  RCX: ffffffffc0307847
    RDX: 00000000000020e6  RSI: ffff891edbc377c8  RDI: 0000000000000000
    RBP: ffff891ee0003c18   R8: ffffffffc02f0b20   R9: 0000000000000250
    R10: 0000000000000258  R11: 000000000000b780  R12: ffff891ed9b43000
    R13: 00000000000000f0  R14: 0000000000000006  R15: ffff891edbc377c8
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 #10 [ffff891ee0003c20] qla2x00_fcport_event_handler at ffffffffc02853d3 [qla2xxx]
 #11 [ffff891ee0003cf0] __dta_qla24xx_async_gnl_sp_done_333 at ffffffffc0285a1d [qla2xxx]
 #12 [ffff891ee0003de8] qla24xx_process_response_queue at ffffffffc02a2eb5 [qla2xxx]
 #13 [ffff891ee0003e88] qla24xx_msix_rsp_q at ffffffffc02a5403 [qla2xxx]
 #14 [ffff891ee0003ec0] __handle_irq_event_percpu at ffffffffbd0f4c59
 #15 [ffff891ee0003f10] handle_irq_event_percpu at ffffffffbd0f4e02
 #16 [ffff891ee0003f40] handle_irq_event at ffffffffbd0f4e90
 #17 [ffff891ee0003f68] handle_edge_irq at ffffffffbd0f8984
 #18 [ffff891ee0003f88] handle_irq at ffffffffbd0305d5
 #19 [ffff891ee0003fb8] do_IRQ at ffffffffbda02a18
 --- <IRQ stack> ---
 #20 [ffffffffbe403d30] ret_from_intr at ffffffffbda0094e
    [exception RIP: unknown or invalid address]
    RIP: 000000000000001f  RSP: 0000000000000000  RFLAGS: fff3b8c2091ebb3f
    RAX: ffffbba5a0000200  RBX: 0000be8cdfa8f9fa  RCX: 0000000000000018
    RDX: 0000000000000101  RSI: 000000000000015d  RDI: 0000000000000193
    RBP: 0000000000000083   R8: ffffffffbe403e38   R9: 0000000000000002
    R10: 0000000000000000  R11: ffffffffbe56b820  R12: ffff891ee001cf00
    R13: ffffffffbd11c0a4  R14: ffffffffbe403d60  R15: 0000000000000001
    ORIG_RAX: ffff891ee0022ac0  CS: 0000  SS: ffffffffffffffb9
 bt: WARNING: possibly bogus exception frame
 #21 [ffffffffbe403dd8] cpuidle_enter_state at ffffffffbd67c6fd
 #22 [ffffffffbe403e40] cpuidle_enter at ffffffffbd67c907
 #23 [ffffffffbe403e50] call_cpuidle at ffffffffbd0d98f3
 #24 [ffffffffbe403e60] do_idle at ffffffffbd0d9b42
 #25 [ffffffffbe403e98] cpu_startup_entry at ffffffffbd0d9da3
 #26 [ffffffffbe403ec0] rest_init at ffffffffbd81d4aa
 #27 [ffffffffbe403ed0] start_kernel at ffffffffbe67d2ca
 #28 [ffffffffbe403f28] x86_64_start_reservations at ffffffffbe67c675
 #29 [ffffffffbe403f38] x86_64_start_kernel at ffffffffbe67c6eb
 #30 [ffffffffbe403f50] secondary_startup_64 at ffffffffbd0000d5

Fixes: 040036b ("scsi: qla2xxx: Delay loop id allocation at login")
Cc: <[email protected]> # v4.17+
Signed-off-by: Chuck Anderson <[email protected]>
Signed-off-by: Himanshu Madhani <[email protected]>
Signed-off-by: Martin K. Petersen <[email protected]>
heiher pushed a commit that referenced this issue Jul 25, 2018
If the controller supports effects and goes down during the passthru admin
command we will deadlock during namespace revalidation.

[  363.488275] INFO: task kworker/u16:5:231 blocked for more than 120 seconds.
[  363.488290]       Not tainted 4.17.0+ #2
[  363.488296] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[  363.488303] kworker/u16:5   D    0   231      2 0x80000000
[  363.488331] Workqueue: nvme-reset-wq nvme_reset_work [nvme]
[  363.488338] Call Trace:
[  363.488385]  schedule+0x75/0x190
[  363.488396]  rwsem_down_read_failed+0x1c3/0x2f0
[  363.488481]  call_rwsem_down_read_failed+0x14/0x30
[  363.488504]  down_read+0x1d/0x80
[  363.488523]  nvme_stop_queues+0x1e/0xa0 [nvme_core]
[  363.488536]  nvme_dev_disable+0xae4/0x1620 [nvme]
[  363.488614]  nvme_reset_work+0xd1e/0x49d9 [nvme]
[  363.488911]  process_one_work+0x81a/0x1400
[  363.488934]  worker_thread+0x87/0xe80
[  363.488955]  kthread+0x2db/0x390
[  363.488977]  ret_from_fork+0x35/0x40

Fixes: 84fef62 ("nvme: check admin passthru command effects")
Signed-off-by: Scott Bauer <[email protected]>
Reviewed-by: Keith Busch <[email protected]>
Signed-off-by: Christoph Hellwig <[email protected]>
heiher pushed a commit that referenced this issue Jul 26, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Jul 26, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Aug 18, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Aug 18, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Aug 18, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Aug 18, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Aug 18, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Aug 18, 2018
The current MIPS implementation of arch_trigger_cpumask_backtrace() is
broken because it attempts to use synchronous IPIs despite the fact that
it may be run with interrupts disabled.

This means that when arch_trigger_cpumask_backtrace() is invoked, for
example by the RCU CPU stall watchdog, we may:

  - Deadlock due to use of synchronous IPIs with interrupts disabled,
    causing the CPU that's attempting to generate the backtrace output
    to hang itself.

  - Not succeed in generating the desired output from remote CPUs.

  - Produce warnings about this from smp_call_function_many(), for
    example:

    [42760.526910] INFO: rcu_sched detected stalls on CPUs/tasks:
    [42760.535755]  0-...!: (1 GPs behind) idle=ade/140000000000000/0 softirq=526944/526945 fqs=0
    [42760.547874]  1-...!: (0 ticks this GP) idle=e4a/140000000000000/0 softirq=547885/547885 fqs=0
    [42760.559869]  (detected by 2, t=2162 jiffies, g=266689, c=266688, q=33)
    [42760.568927] ------------[ cut here ]------------
    [42760.576146] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:416 smp_call_function_many+0x88/0x20c
    [42760.587839] Modules linked in:
    [42760.593152] CPU: 2 PID: 1216 Comm: sh Not tainted 4.15.4-00373-gee058bb4d0c2 #2
    [42760.603767] Stack : 8e09bd20 8e09bd20 8e09bd20 fffffff0 00000007 00000006 00000000 8e09bca8
    [42760.616937]         95b2b379 95b2b379 807a0080 00000007 81944518 0000018a 00000032 00000000
    [42760.630095]         00000000 00000030 80000000 00000000 806eca74 00000009 8017e2b8 000001a0
    [42760.643169]         00000000 00000002 00000000 8e09baa4 00000008 808b8008 86d69080 8e09bca0
    [42760.656282]         8e09ad50 805e20aa 00000000 00000000 00000000 8017e2b8 00000009 801070ca
    [42760.669424]         ...
    [42760.673919] Call Trace:
    [42760.678672] [<27fde568>] show_stack+0x70/0xf0
    [42760.685417] [<84751641>] dump_stack+0xaa/0xd0
    [42760.692188] [<699d671c>] __warn+0x80/0x92
    [42760.698549] [<68915d41>] warn_slowpath_null+0x28/0x36
    [42760.705912] [<f7c76c1c>] smp_call_function_many+0x88/0x20c
    [42760.713696] [<6bbdfc2a>] arch_trigger_cpumask_backtrace+0x30/0x4a
    [42760.722216] [<f845bd33>] rcu_dump_cpu_stacks+0x6a/0x98
    [42760.729580] [<796e7629>] rcu_check_callbacks+0x672/0x6ac
    [42760.737476] [<059b3b43>] update_process_times+0x18/0x34
    [42760.744981] [<6eb94941>] tick_sched_handle.isra.5+0x26/0x38
    [42760.752793] [<478d3d70>] tick_sched_timer+0x1c/0x50
    [42760.759882] [<e56ea39f>] __hrtimer_run_queues+0xc6/0x226
    [42760.767418] [<e88bbcae>] hrtimer_interrupt+0x88/0x19a
    [42760.775031] [<6765a19e>] gic_compare_interrupt+0x2e/0x3a
    [42760.782761] [<0558bf5f>] handle_percpu_devid_irq+0x78/0x168
    [42760.790795] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
    [42760.798117] [<1b6d462c>] gic_handle_local_int+0x38/0x86
    [42760.805545] [<b2ada1c7>] gic_irq_dispatch+0xa/0x14
    [42760.812534] [<90c11ba2>] generic_handle_irq+0x1e/0x2c
    [42760.820086] [<c7521934>] do_IRQ+0x16/0x20
    [42760.826274] [<9aef3ce6>] plat_irq_dispatch+0x62/0x94
    [42760.833458] [<6a94b53c>] except_vec_vi_end+0x70/0x78
    [42760.840655] [<22284043>] smp_call_function_many+0x1ba/0x20c
    [42760.848501] [<54022b58>] smp_call_function+0x1e/0x2c
    [42760.855693] [<ab9fc705>] flush_tlb_mm+0x2a/0x98
    [42760.862730] [<0844cdd0>] tlb_flush_mmu+0x1c/0x44
    [42760.869628] [<cb259b74>] arch_tlb_finish_mmu+0x26/0x3e
    [42760.877021] [<1aeaaf74>] tlb_finish_mmu+0x18/0x66
    [42760.883907] [<b3fce717>] exit_mmap+0x76/0xea
    [42760.890428] [<c4c8a2f6>] mmput+0x80/0x11a
    [42760.896632] [<a41a08f4>] do_exit+0x1f4/0x80c
    [42760.903158] [<ee01cef6>] do_group_exit+0x20/0x7e
    [42760.909990] [<13fa8d54>] __wake_up_parent+0x0/0x1e
    [42760.917045] [<46cf89d0>] smp_call_function_many+0x1a2/0x20c
    [42760.924893] [<8c21a93b>] syscall_common+0x14/0x1c
    [42760.931765] ---[ end trace 02aa09da9dc52a60 ]---
    [42760.938342] ------------[ cut here ]------------
    [42760.945311] WARNING: CPU: 2 PID: 1216 at kernel/smp.c:291 smp_call_function_single+0xee/0xf8
    ...

This patch switches MIPS' arch_trigger_cpumask_backtrace() to use async
IPIs & smp_call_function_single_async() in order to resolve this
problem. We ensure use of the pre-allocated call_single_data_t
structures is serialized by maintaining a cpumask indicating that
they're busy, and refusing to attempt to send an IPI when a CPU's bit is
set in this mask. This should only happen if a CPU hasn't responded to a
previous backtrace IPI - ie. if it's hung - and we print a warning to
the console in this case.

I've marked this for stable branches as far back as v4.9, to which it
applies cleanly. Strictly speaking the faulty MIPS implementation can be
traced further back to commit 856839b ("MIPS: Add
arch_trigger_all_cpu_backtrace() function") in v3.19, but kernel
versions v3.19 through v4.8 will require further work to backport due to
the rework performed in commit 9a01c3e ("nmi_backtrace: add more
trigger_*_cpu_backtrace() methods").

Signed-off-by: Paul Burton <[email protected]>
Patchwork: https://patchwork.linux-mips.org/patch/19597/
Cc: James Hogan <[email protected]>
Cc: Ralf Baechle <[email protected]>
Cc: [email protected]
Cc: [email protected]
Fixes: 856839b ("MIPS: Add arch_trigger_all_cpu_backtrace() function")
Fixes: 9a01c3e ("nmi_backtrace: add more trigger_*_cpu_backtrace() methods")
[ Huacai: backported to 4.4: Restruction since generic NMI solution is unavailable ]
Signed-off-by: Huacai Chen <[email protected]>
heiher pushed a commit that referenced this issue Aug 18, 2018
This patch is borrowed from x86 hpet driver and explaind below:

Due to the overly intelligent design of HPETs, we need to workaround
the problem that the compare value which we write is already behind
the actual counter value at the point where the value hits the real
compare register. This happens for two reasons:

1) We read out the counter, add the delta and write the result to the
   compare register. When a NMI hits between the read out and the write
   then the counter can be ahead of the event already.

2) The write to the compare register is delayed by up to two HPET
   cycles in AMD chipsets.

We can work around this by reading back the compare register to make
sure that the written value has hit the hardware. But that is bad
performance wise for the normal case where the event is far enough in
the future.

As we already know that the write can be delayed by up to two cycles
we can avoid the read back of the compare register completely if we
make the decision whether the delta has elapsed already or not based
on the following calculation:

  cmp = event - actual_count;

If cmp is less than 64 HPET clock cycles, then we decide that the event
has happened already and return -ETIME. That covers the above #1 and #2
problems which would cause a wait for HPET wraparound (~306 seconds).

Cc: <[email protected]>
Signed-off-by: Huacai Chen <[email protected]>
lshw pushed a commit to lshw/linux-stable-loongson3 that referenced this issue Mar 20, 2023
Directories and inodes don't necessarily need to be in the same lockdep
class.  For ex, hugetlbfs splits them out too to prevent false positives
in lockdep.  Annotate correctly after new inode creation.  If its a
directory inode, it will be put into a different class.

This should fix a lockdep splat reported by syzbot:

> ======================================================
> WARNING: possible circular locking dependency detected
> 4.18.0-rc8-next-20180810+ #36 Not tainted
> ------------------------------------------------------
> syz-executor900/4483 is trying to acquire lock:
> 00000000d2bfc8fe (&sb->s_type->i_mutex_key#9){++++}, at: inode_lock
> include/linux/fs.h:765 [inline]
> 00000000d2bfc8fe (&sb->s_type->i_mutex_key#9){++++}, at:
> shmem_fallocate+0x18b/0x12e0 mm/shmem.c:2602
>
> but task is already holding lock:
> 0000000025208078 (ashmem_mutex){+.+.}, at: ashmem_shrink_scan+0xb4/0x630
> drivers/staging/android/ashmem.c:448
>
> which lock already depends on the new lock.
>
> -> loongson-community#2 (ashmem_mutex){+.+.}:
>        __mutex_lock_common kernel/locking/mutex.c:925 [inline]
>        __mutex_lock+0x171/0x1700 kernel/locking/mutex.c:1073
>        mutex_lock_nested+0x16/0x20 kernel/locking/mutex.c:1088
>        ashmem_mmap+0x55/0x520 drivers/staging/android/ashmem.c:361
>        call_mmap include/linux/fs.h:1844 [inline]
>        mmap_region+0xf27/0x1c50 mm/mmap.c:1762
>        do_mmap+0xa10/0x1220 mm/mmap.c:1535
>        do_mmap_pgoff include/linux/mm.h:2298 [inline]
>        vm_mmap_pgoff+0x213/0x2c0 mm/util.c:357
>        ksys_mmap_pgoff+0x4da/0x660 mm/mmap.c:1585
>        __do_sys_mmap arch/x86/kernel/sys_x86_64.c:100 [inline]
>        __se_sys_mmap arch/x86/kernel/sys_x86_64.c:91 [inline]
>        __x64_sys_mmap+0xe9/0x1b0 arch/x86/kernel/sys_x86_64.c:91
>        do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
>        entry_SYSCALL_64_after_hwframe+0x49/0xbe
>
> -> loongson-community#1 (&mm->mmap_sem){++++}:
>        __might_fault+0x155/0x1e0 mm/memory.c:4568
>        _copy_to_user+0x30/0x110 lib/usercopy.c:25
>        copy_to_user include/linux/uaccess.h:155 [inline]
>        filldir+0x1ea/0x3a0 fs/readdir.c:196
>        dir_emit_dot include/linux/fs.h:3464 [inline]
>        dir_emit_dots include/linux/fs.h:3475 [inline]
>        dcache_readdir+0x13a/0x620 fs/libfs.c:193
>        iterate_dir+0x48b/0x5d0 fs/readdir.c:51
>        __do_sys_getdents fs/readdir.c:231 [inline]
>        __se_sys_getdents fs/readdir.c:212 [inline]
>        __x64_sys_getdents+0x29f/0x510 fs/readdir.c:212
>        do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
>        entry_SYSCALL_64_after_hwframe+0x49/0xbe
>
> -> #0 (&sb->s_type->i_mutex_key#9){++++}:
>        lock_acquire+0x1e4/0x540 kernel/locking/lockdep.c:3924
>        down_write+0x8f/0x130 kernel/locking/rwsem.c:70
>        inode_lock include/linux/fs.h:765 [inline]
>        shmem_fallocate+0x18b/0x12e0 mm/shmem.c:2602
>        ashmem_shrink_scan+0x236/0x630 drivers/staging/android/ashmem.c:455
>        ashmem_ioctl+0x3ae/0x13a0 drivers/staging/android/ashmem.c:797
>        vfs_ioctl fs/ioctl.c:46 [inline]
>        file_ioctl fs/ioctl.c:501 [inline]
>        do_vfs_ioctl+0x1de/0x1720 fs/ioctl.c:685
>        ksys_ioctl+0xa9/0xd0 fs/ioctl.c:702
>        __do_sys_ioctl fs/ioctl.c:709 [inline]
>        __se_sys_ioctl fs/ioctl.c:707 [inline]
>        __x64_sys_ioctl+0x73/0xb0 fs/ioctl.c:707
>        do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
>        entry_SYSCALL_64_after_hwframe+0x49/0xbe
>
> other info that might help us debug this:
>
> Chain exists of:
>   &sb->s_type->i_mutex_key#9 --> &mm->mmap_sem --> ashmem_mutex
>
>  Possible unsafe locking scenario:
>
>        CPU0                    CPU1
>        ----                    ----
>   lock(ashmem_mutex);
>                                lock(&mm->mmap_sem);
>                                lock(ashmem_mutex);
>   lock(&sb->s_type->i_mutex_key#9);
>
>  *** DEADLOCK ***
>
> 1 lock held by syz-executor900/4483:
>  #0: 0000000025208078 (ashmem_mutex){+.+.}, at:
> ashmem_shrink_scan+0xb4/0x630 drivers/staging/android/ashmem.c:448

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Joel Fernandes (Google) <[email protected]>
Reported-by: syzbot <[email protected]>
Reviewed-by: NeilBrown <[email protected]>
Suggested-by: NeilBrown <[email protected]>
Cc: Matthew Wilcox <[email protected]>
Cc: Peter Zijlstra <[email protected]>
Cc: Hugh Dickins <[email protected]>
Cc: <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
lshw pushed a commit to lshw/linux-stable-loongson3 that referenced this issue Mar 20, 2023
While reading block, it is possible that io error return due to underlying
storage issue, in this case, BH_NeedsValidate was left in the buffer head.
Then when reading the very block next time, if it was already linked into
journal, that will trigger the following panic.

[203748.702517] kernel BUG at fs/ocfs2/buffer_head_io.c:342!
[203748.702533] invalid opcode: 0000 [loongson-community#1] SMP
[203748.702561] Modules linked in: ocfs2 ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm ocfs2_nodemanager ocfs2_stackglue configfs sunrpc dm_switch dm_queue_length dm_multipath bonding be2iscsi iscsi_boot_sysfs bnx2i cnic uio cxgb4i iw_cxgb4 cxgb4 cxgb3i libcxgbi iw_cxgb3 cxgb3 mdio ib_iser rdma_cm ib_cm iw_cm ib_sa ib_mad ib_core ib_addr ipv6 iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi ipmi_devintf iTCO_wdt iTCO_vendor_support dcdbas ipmi_ssif i2c_core ipmi_si ipmi_msghandler acpi_pad pcspkr sb_edac edac_core lpc_ich mfd_core shpchp sg tg3 ptp pps_core ext4 jbd2 mbcache2 sr_mod cdrom sd_mod ahci libahci megaraid_sas wmi dm_mirror dm_region_hash dm_log dm_mod
[203748.703024] CPU: 7 PID: 38369 Comm: touch Not tainted 4.1.12-124.18.6.el6uek.x86_64 loongson-community#2
[203748.703045] Hardware name: Dell Inc. PowerEdge R620/0PXXHP, BIOS 2.5.2 01/28/2015
[203748.703067] task: ffff880768139c00 ti: ffff88006ff48000 task.ti: ffff88006ff48000
[203748.703088] RIP: 0010:[<ffffffffa05e9f09>]  [<ffffffffa05e9f09>] ocfs2_read_blocks+0x669/0x7f0 [ocfs2]
[203748.703130] RSP: 0018:ffff88006ff4b818  EFLAGS: 00010206
[203748.703389] RAX: 0000000008620029 RBX: ffff88006ff4b910 RCX: 0000000000000000
[203748.703885] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00000000023079fe
[203748.704382] RBP: ffff88006ff4b8d8 R08: 0000000000000000 R09: ffff8807578c25b0
[203748.704877] R10: 000000000f637376 R11: 000000003030322e R12: 0000000000000000
[203748.705373] R13: ffff88006ff4b910 R14: ffff880732fe38f0 R15: 0000000000000000
[203748.705871] FS:  00007f401992c700(0000) GS:ffff880bfebc0000(0000) knlGS:0000000000000000
[203748.706370] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[203748.706627] CR2: 00007f4019252440 CR3: 00000000a621e000 CR4: 0000000000060670
[203748.707124] Stack:
[203748.707371]  ffff88006ff4b828 ffffffffa0609f52 ffff88006ff4b838 0000000000000001
[203748.707885]  0000000000000000 0000000000000000 ffff880bf67c3800 ffffffffa05eca00
[203748.708399]  00000000023079ff ffffffff81c58b80 0000000000000000 0000000000000000
[203748.708915] Call Trace:
[203748.709175]  [<ffffffffa0609f52>] ? ocfs2_inode_cache_io_unlock+0x12/0x20 [ocfs2]
[203748.709680]  [<ffffffffa05eca00>] ? ocfs2_empty_dir_filldir+0x80/0x80 [ocfs2]
[203748.710185]  [<ffffffffa05ec0cb>] ocfs2_read_dir_block_direct+0x3b/0x200 [ocfs2]
[203748.710691]  [<ffffffffa05f0fbf>] ocfs2_prepare_dx_dir_for_insert.isra.57+0x19f/0xf60 [ocfs2]
[203748.711204]  [<ffffffffa065660f>] ? ocfs2_metadata_cache_io_unlock+0x1f/0x30 [ocfs2]
[203748.711716]  [<ffffffffa05f4f3a>] ocfs2_prepare_dir_for_insert+0x13a/0x890 [ocfs2]
[203748.712227]  [<ffffffffa05f442e>] ? ocfs2_check_dir_for_entry+0x8e/0x140 [ocfs2]
[203748.712737]  [<ffffffffa061b2f2>] ocfs2_mknod+0x4b2/0x1370 [ocfs2]
[203748.713003]  [<ffffffffa061c385>] ocfs2_create+0x65/0x170 [ocfs2]
[203748.713263]  [<ffffffff8121714b>] vfs_create+0xdb/0x150
[203748.713518]  [<ffffffff8121b225>] do_last+0x815/0x1210
[203748.713772]  [<ffffffff812192e9>] ? path_init+0xb9/0x450
[203748.714123]  [<ffffffff8121bca0>] path_openat+0x80/0x600
[203748.714378]  [<ffffffff811bcd45>] ? handle_pte_fault+0xd15/0x1620
[203748.714634]  [<ffffffff8121d7ba>] do_filp_open+0x3a/0xb0
[203748.714888]  [<ffffffff8122a767>] ? __alloc_fd+0xa7/0x130
[203748.715143]  [<ffffffff81209ffc>] do_sys_open+0x12c/0x220
[203748.715403]  [<ffffffff81026ddb>] ? syscall_trace_enter_phase1+0x11b/0x180
[203748.715668]  [<ffffffff816f0c9f>] ? system_call_after_swapgs+0xe9/0x190
[203748.715928]  [<ffffffff8120a10e>] SyS_open+0x1e/0x20
[203748.716184]  [<ffffffff816f0d5e>] system_call_fastpath+0x18/0xd7
[203748.716440] Code: 00 00 48 8b 7b 08 48 83 c3 10 45 89 f8 44 89 e1 44 89 f2 4c 89 ee e8 07 06 11 e1 48 8b 03 48 85 c0 75 df 8b 5d c8 e9 4d fa ff ff <0f> 0b 48 8b 7d a0 e8 dc c6 06 00 48 b8 00 00 00 00 00 00 00 10
[203748.717505] RIP  [<ffffffffa05e9f09>] ocfs2_read_blocks+0x669/0x7f0 [ocfs2]
[203748.717775]  RSP <ffff88006ff4b818>

Joesph ever reported a similar panic.
Link: https://oss.oracle.com/pipermail/ocfs2-devel/2013-May/008931.html

Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Junxiao Bi <[email protected]>
Cc: Joseph Qi <[email protected]>
Cc: Mark Fasheh <[email protected]>
Cc: Joel Becker <[email protected]>
Cc: Changwei Ge <[email protected]>
Cc: <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
lshw pushed a commit to lshw/linux-stable-loongson3 that referenced this issue Mar 20, 2023
This change has the following effects, in order of descreasing importance:

1) Prevent a stack buffer overflow

2) Do not append an unnecessary NULL to an anyway binary buffer, which
   is writing one byte past client_digest when caller is:
   chap_string_to_hex(client_digest, chap_r, strlen(chap_r));

The latter was found by KASAN (see below) when input value hes expected size
(32 hex chars), and further analysis revealed a stack buffer overflow can
happen when network-received value is longer, allowing an unauthenticated
remote attacker to smash up to 17 bytes after destination buffer (16 bytes
attacker-controlled and one null).  As switching to hex2bin requires
specifying destination buffer length, and does not internally append any null,
it solves both issues.

This addresses CVE-2018-14633.

Beyond this:

- Validate received value length and check hex2bin accepted the input, to log
  this rejection reason instead of just failing authentication.

- Only log received CHAP_R and CHAP_C values once they passed sanity checks.

==================================================================
BUG: KASAN: stack-out-of-bounds in chap_string_to_hex+0x32/0x60 [iscsi_target_mod]
Write of size 1 at addr ffff8801090ef7c8 by task kworker/0:0/1021

CPU: 0 PID: 1021 Comm: kworker/0:0 Tainted: G           O      4.17.8kasan.sess.connops+ loongson-community#2
Hardware name: To be filled by O.E.M. To be filled by O.E.M./Aptio CRB, BIOS 5.6.5 05/19/2014
Workqueue: events iscsi_target_do_login_rx [iscsi_target_mod]
Call Trace:
 dump_stack+0x71/0xac
 print_address_description+0x65/0x22e
 ? chap_string_to_hex+0x32/0x60 [iscsi_target_mod]
 kasan_report.cold.6+0x241/0x2fd
 chap_string_to_hex+0x32/0x60 [iscsi_target_mod]
 chap_server_compute_md5.isra.2+0x2cb/0x860 [iscsi_target_mod]
 ? chap_binaryhex_to_asciihex.constprop.5+0x50/0x50 [iscsi_target_mod]
 ? ftrace_caller_op_ptr+0xe/0xe
 ? __orc_find+0x6f/0xc0
 ? unwind_next_frame+0x231/0x850
 ? kthread+0x1a0/0x1c0
 ? ret_from_fork+0x35/0x40
 ? ret_from_fork+0x35/0x40
 ? iscsi_target_do_login_rx+0x3bc/0x4c0 [iscsi_target_mod]
 ? deref_stack_reg+0xd0/0xd0
 ? iscsi_target_do_login_rx+0x3bc/0x4c0 [iscsi_target_mod]
 ? is_module_text_address+0xa/0x11
 ? kernel_text_address+0x4c/0x110
 ? __save_stack_trace+0x82/0x100
 ? ret_from_fork+0x35/0x40
 ? save_stack+0x8c/0xb0
 ? 0xffffffffc1660000
 ? iscsi_target_do_login+0x155/0x8d0 [iscsi_target_mod]
 ? iscsi_target_do_login_rx+0x3bc/0x4c0 [iscsi_target_mod]
 ? process_one_work+0x35c/0x640
 ? worker_thread+0x66/0x5d0
 ? kthread+0x1a0/0x1c0
 ? ret_from_fork+0x35/0x40
 ? iscsi_update_param_value+0x80/0x80 [iscsi_target_mod]
 ? iscsit_release_cmd+0x170/0x170 [iscsi_target_mod]
 chap_main_loop+0x172/0x570 [iscsi_target_mod]
 ? chap_server_compute_md5.isra.2+0x860/0x860 [iscsi_target_mod]
 ? rx_data+0xd6/0x120 [iscsi_target_mod]
 ? iscsit_print_session_params+0xd0/0xd0 [iscsi_target_mod]
 ? cyc2ns_read_begin.part.2+0x90/0x90
 ? _raw_spin_lock_irqsave+0x25/0x50
 ? memcmp+0x45/0x70
 iscsi_target_do_login+0x875/0x8d0 [iscsi_target_mod]
 ? iscsi_target_check_first_request.isra.5+0x1a0/0x1a0 [iscsi_target_mod]
 ? del_timer+0xe0/0xe0
 ? memset+0x1f/0x40
 ? flush_sigqueue+0x29/0xd0
 iscsi_target_do_login_rx+0x3bc/0x4c0 [iscsi_target_mod]
 ? iscsi_target_nego_release+0x80/0x80 [iscsi_target_mod]
 ? iscsi_target_restore_sock_callbacks+0x130/0x130 [iscsi_target_mod]
 process_one_work+0x35c/0x640
 worker_thread+0x66/0x5d0
 ? flush_rcu_work+0x40/0x40
 kthread+0x1a0/0x1c0
 ? kthread_bind+0x30/0x30
 ret_from_fork+0x35/0x40

The buggy address belongs to the page:
page:ffffea0004243bc0 count:0 mapcount:0 mapping:0000000000000000 index:0x0
flags: 0x17fffc000000000()
raw: 017fffc000000000 0000000000000000 0000000000000000 00000000ffffffff
raw: ffffea0004243c20 ffffea0004243ba0 0000000000000000 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff8801090ef680: f2 f2 f2 f2 f2 f2 f2 01 f2 f2 f2 f2 f2 f2 f2 00
 ffff8801090ef700: f2 f2 f2 f2 f2 f2 f2 00 02 f2 f2 f2 f2 f2 f2 00
>ffff8801090ef780: 00 f2 f2 f2 f2 f2 f2 00 00 f2 f2 f2 f2 f2 f2 00
                                              ^
 ffff8801090ef800: 00 f2 f2 f2 f2 f2 f2 00 00 00 00 02 f2 f2 f2 f2
 ffff8801090ef880: f2 f2 f2 00 00 00 00 00 00 00 00 f2 f2 f2 f2 00
==================================================================

Signed-off-by: Vincent Pelletier <[email protected]>
Reviewed-by: Mike Christie <[email protected]>
Signed-off-by: Martin K. Petersen <[email protected]>
lshw pushed a commit to lshw/linux-stable-loongson3 that referenced this issue Mar 20, 2023
Syzkaller reported this on a slightly older kernel but it's still
applicable to the current kernel -

======================================================
WARNING: possible circular locking dependency detected
4.18.0-next-20180823+ #46 Not tainted
------------------------------------------------------
syz-executor4/26841 is trying to acquire lock:
00000000dd41ef48 ((wq_completion)bond_dev->name){+.+.}, at: flush_workqueue+0x2db/0x1e10 kernel/workqueue.c:2652

but task is already holding lock:
00000000768ab431 (rtnl_mutex){+.+.}, at: rtnl_lock net/core/rtnetlink.c:77 [inline]
00000000768ab431 (rtnl_mutex){+.+.}, at: rtnetlink_rcv_msg+0x412/0xc30 net/core/rtnetlink.c:4708

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> loongson-community#2 (rtnl_mutex){+.+.}:
       __mutex_lock_common kernel/locking/mutex.c:925 [inline]
       __mutex_lock+0x171/0x1700 kernel/locking/mutex.c:1073
       mutex_lock_nested+0x16/0x20 kernel/locking/mutex.c:1088
       rtnl_lock+0x17/0x20 net/core/rtnetlink.c:77
       bond_netdev_notify drivers/net/bonding/bond_main.c:1310 [inline]
       bond_netdev_notify_work+0x44/0xd0 drivers/net/bonding/bond_main.c:1320
       process_one_work+0xc73/0x1aa0 kernel/workqueue.c:2153
       worker_thread+0x189/0x13c0 kernel/workqueue.c:2296
       kthread+0x35a/0x420 kernel/kthread.c:246
       ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:415

-> loongson-community#1 ((work_completion)(&(&nnw->work)->work)){+.+.}:
       process_one_work+0xc0b/0x1aa0 kernel/workqueue.c:2129
       worker_thread+0x189/0x13c0 kernel/workqueue.c:2296
       kthread+0x35a/0x420 kernel/kthread.c:246
       ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:415

-> #0 ((wq_completion)bond_dev->name){+.+.}:
       lock_acquire+0x1e4/0x4f0 kernel/locking/lockdep.c:3901
       flush_workqueue+0x30a/0x1e10 kernel/workqueue.c:2655
       drain_workqueue+0x2a9/0x640 kernel/workqueue.c:2820
       destroy_workqueue+0xc6/0x9d0 kernel/workqueue.c:4155
       __alloc_workqueue_key+0xef9/0x1190 kernel/workqueue.c:4138
       bond_init+0x269/0x940 drivers/net/bonding/bond_main.c:4734
       register_netdevice+0x337/0x1100 net/core/dev.c:8410
       bond_newlink+0x49/0xa0 drivers/net/bonding/bond_netlink.c:453
       rtnl_newlink+0xef4/0x1d50 net/core/rtnetlink.c:3099
       rtnetlink_rcv_msg+0x46e/0xc30 net/core/rtnetlink.c:4711
       netlink_rcv_skb+0x172/0x440 net/netlink/af_netlink.c:2454
       rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:4729
       netlink_unicast_kernel net/netlink/af_netlink.c:1317 [inline]
       netlink_unicast+0x5a0/0x760 net/netlink/af_netlink.c:1343
       netlink_sendmsg+0xa18/0xfc0 net/netlink/af_netlink.c:1908
       sock_sendmsg_nosec net/socket.c:622 [inline]
       sock_sendmsg+0xd5/0x120 net/socket.c:632
       ___sys_sendmsg+0x7fd/0x930 net/socket.c:2115
       __sys_sendmsg+0x11d/0x290 net/socket.c:2153
       __do_sys_sendmsg net/socket.c:2162 [inline]
       __se_sys_sendmsg net/socket.c:2160 [inline]
       __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2160
       do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
       entry_SYSCALL_64_after_hwframe+0x49/0xbe

other info that might help us debug this:

Chain exists of:
  (wq_completion)bond_dev->name --> (work_completion)(&(&nnw->work)->work) --> rtnl_mutex

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(rtnl_mutex);
                               lock((work_completion)(&(&nnw->work)->work));
                               lock(rtnl_mutex);
  lock((wq_completion)bond_dev->name);

 *** DEADLOCK ***

1 lock held by syz-executor4/26841:

stack backtrace:
CPU: 1 PID: 26841 Comm: syz-executor4 Not tainted 4.18.0-next-20180823+ #46
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x1c9/0x2b4 lib/dump_stack.c:113
 print_circular_bug.isra.34.cold.55+0x1bd/0x27d kernel/locking/lockdep.c:1222
 check_prev_add kernel/locking/lockdep.c:1862 [inline]
 check_prevs_add kernel/locking/lockdep.c:1975 [inline]
 validate_chain kernel/locking/lockdep.c:2416 [inline]
 __lock_acquire+0x3449/0x5020 kernel/locking/lockdep.c:3412
 lock_acquire+0x1e4/0x4f0 kernel/locking/lockdep.c:3901
 flush_workqueue+0x30a/0x1e10 kernel/workqueue.c:2655
 drain_workqueue+0x2a9/0x640 kernel/workqueue.c:2820
 destroy_workqueue+0xc6/0x9d0 kernel/workqueue.c:4155
 __alloc_workqueue_key+0xef9/0x1190 kernel/workqueue.c:4138
 bond_init+0x269/0x940 drivers/net/bonding/bond_main.c:4734
 register_netdevice+0x337/0x1100 net/core/dev.c:8410
 bond_newlink+0x49/0xa0 drivers/net/bonding/bond_netlink.c:453
 rtnl_newlink+0xef4/0x1d50 net/core/rtnetlink.c:3099
 rtnetlink_rcv_msg+0x46e/0xc30 net/core/rtnetlink.c:4711
 netlink_rcv_skb+0x172/0x440 net/netlink/af_netlink.c:2454
 rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:4729
 netlink_unicast_kernel net/netlink/af_netlink.c:1317 [inline]
 netlink_unicast+0x5a0/0x760 net/netlink/af_netlink.c:1343
 netlink_sendmsg+0xa18/0xfc0 net/netlink/af_netlink.c:1908
 sock_sendmsg_nosec net/socket.c:622 [inline]
 sock_sendmsg+0xd5/0x120 net/socket.c:632
 ___sys_sendmsg+0x7fd/0x930 net/socket.c:2115
 __sys_sendmsg+0x11d/0x290 net/socket.c:2153
 __do_sys_sendmsg net/socket.c:2162 [inline]
 __se_sys_sendmsg net/socket.c:2160 [inline]
 __x64_sys_sendmsg+0x78/0xb0 net/socket.c:2160
 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
 entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x457089
Code: fd b4 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 cb b4 fb ff c3 66 2e 0f 1f 84 00 00 00 00
RSP: 002b:00007f2df20a5c78 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f2df20a66d4 RCX: 0000000000457089
RDX: 0000000000000000 RSI: 0000000020000180 RDI: 0000000000000003
RBP: 0000000000930140 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff
R13: 00000000004d40b8 R14: 00000000004c8ad8 R15: 0000000000000001

Signed-off-by: Mahesh Bandewar <[email protected]>
Signed-off-by: David S. Miller <[email protected]>
lshw pushed a commit to lshw/linux-stable-loongson3 that referenced this issue Mar 20, 2023
This reverts commit d76c743.

While commit d76c743 ("serial: 8250_dw: Fix runtime PM handling")
fixes runtime PM handling when using kgdb, it introduces a traceback for
everyone else.

BUG: sleeping function called from invalid context at
	/mnt/host/source/src/third_party/kernel/next/drivers/base/power/runtime.c:1034
in_atomic(): 1, irqs_disabled(): 1, pid: 1, name: swapper/0
7 locks held by swapper/0/1:
 #0: 000000005ec5bc72 (&dev->mutex){....}, at: __driver_attach+0xb5/0x12b
 loongson-community#1: 000000005d5fa9e5 (&dev->mutex){....}, at: __device_attach+0x3e/0x15b
 loongson-community#2: 0000000047e93286 (serial_mutex){+.+.}, at: serial8250_register_8250_port+0x51/0x8bb
 loongson-community#3: 000000003b328f07 (port_mutex){+.+.}, at: uart_add_one_port+0xab/0x8b0
 loongson-community#4: 00000000fa313d4d (&port->mutex){+.+.}, at: uart_add_one_port+0xcc/0x8b0
 loongson-community#5: 00000000090983ca (console_lock){+.+.}, at: vprintk_emit+0xdb/0x217
 loongson-community#6: 00000000c743e583 (console_owner){-...}, at: console_unlock+0x211/0x60f
irq event stamp: 735222
__down_trylock_console_sem+0x4a/0x84
console_unlock+0x338/0x60f
__do_softirq+0x4a4/0x50d
irq_exit+0x64/0xe2
CPU: 2 PID: 1 Comm: swapper/0 Not tainted 4.19.0-rc5 loongson-community#6
Hardware name: Google Caroline/Caroline, BIOS Google_Caroline.7820.286.0 03/15/2017
Call Trace:
 dump_stack+0x7d/0xbd
 ___might_sleep+0x238/0x259
 __pm_runtime_resume+0x4e/0xa4
 ? serial8250_rpm_get+0x2e/0x44
 serial8250_console_write+0x44/0x301
 ? lock_acquire+0x1b8/0x1fa
 console_unlock+0x577/0x60f
 vprintk_emit+0x1f0/0x217
 printk+0x52/0x6e
 register_console+0x43b/0x524
 uart_add_one_port+0x672/0x8b0
 ? set_io_from_upio+0x150/0x162
 serial8250_register_8250_port+0x825/0x8bb
 dw8250_probe+0x80c/0x8b0
 ? dw8250_serial_inq+0x8e/0x8e
 ? dw8250_check_lcr+0x108/0x108
 ? dw8250_runtime_resume+0x5b/0x5b
 ? dw8250_serial_outq+0xa1/0xa1
 ? dw8250_remove+0x115/0x115
 platform_drv_probe+0x76/0xc5
 really_probe+0x1f1/0x3ee
 ? driver_allows_async_probing+0x5d/0x5d
 driver_probe_device+0xd6/0x112
 ? driver_allows_async_probing+0x5d/0x5d
 bus_for_each_drv+0xbe/0xe5
 __device_attach+0xdd/0x15b
 bus_probe_device+0x5a/0x10b
 device_add+0x501/0x894
 ? _raw_write_unlock+0x27/0x3a
 platform_device_add+0x224/0x2b7
 mfd_add_device+0x718/0x75b
 ? __kmalloc+0x144/0x16a
 ? mfd_add_devices+0x38/0xdb
 mfd_add_devices+0x9b/0xdb
 intel_lpss_probe+0x7d4/0x8ee
 intel_lpss_pci_probe+0xac/0xd4
 pci_device_probe+0x101/0x18e
...

Revert the offending patch until a more comprehensive solution
is available.

Cc: Tony Lindgren <[email protected]>
Cc: Andy Shevchenko <[email protected]>
Cc: Phil Edworthy <[email protected]>
Fixes: d76c743 ("serial: 8250_dw: Fix runtime PM handling")
Signed-off-by: Guenter Roeck <[email protected]>
Signed-off-by: Greg Kroah-Hartman <[email protected]>
lshw pushed a commit to lshw/linux-stable-loongson3 that referenced this issue Mar 20, 2023
If I attach a vfio-ccw device to my guest, I get the following warning
on the host when the host kernel is CONFIG_HARDENED_USERCOPY=y

[250757.595325] Bad or missing usercopy whitelist? Kernel memory overwrite attempt detected to SLUB object 'dma-kmalloc-512' (offset 64, size 124)!
[250757.595365] WARNING: CPU: 2 PID: 10958 at mm/usercopy.c:81 usercopy_warn+0xac/0xd8
[250757.595369] Modules linked in: kvm vhost_net vhost tap xt_CHECKSUM iptable_mangle ipt_MASQUERADE iptable_nat nf_nat_ipv4 nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack libcrc32c devlink tun bridge stp llc ebtable_filter ebtables ip6table_filter ip6_tables sunrpc dm_multipath s390_trng crc32_vx_s390 ghash_s390 prng aes_s390 des_s390 des_generic sha512_s390 sha1_s390 eadm_sch tape_3590 tape tape_class qeth_l2 qeth ccwgroup vfio_ccw vfio_mdev zcrypt_cex4 mdev vfio_iommu_type1 zcrypt vfio sha256_s390 sha_common zfcp scsi_transport_fc qdio dasd_eckd_mod dasd_mod
[250757.595424] CPU: 2 PID: 10958 Comm: CPU 2/KVM Not tainted 4.18.0-derp loongson-community#2
[250757.595426] Hardware name: IBM 3906 M05 780 (LPAR)
...snip regs...
[250757.595523] Call Trace:
[250757.595529] ([<0000000000349210>] usercopy_warn+0xa8/0xd8)
[250757.595535]  [<000000000032daaa>] __check_heap_object+0xfa/0x160
[250757.595540]  [<0000000000349396>] __check_object_size+0x156/0x1d0
[250757.595547]  [<000003ff80332d04>] vfio_ccw_mdev_write+0x74/0x148 [vfio_ccw]
[250757.595552]  [<000000000034ed12>] __vfs_write+0x3a/0x188
[250757.595556]  [<000000000034f040>] vfs_write+0xa8/0x1b8
[250757.595559]  [<000000000034f4e6>] ksys_pwrite64+0x86/0xc0
[250757.595568]  [<00000000008959a0>] system_call+0xdc/0x2b0
[250757.595570] Last Breaking-Event-Address:
[250757.595573]  [<0000000000349210>] usercopy_warn+0xa8/0xd8

While vfio_ccw_mdev_{write|read} validates that the input position/count
does not run over the ccw_io_region struct, the usercopy code that does
copy_{to|from}_user doesn't necessarily know this. It sees the variable
length and gets worried that it's affecting a normal kmalloc'd struct,
and generates the above warning.

Adjust how the ccw_io_region is alloc'd with a whitelist to remove this
warning. The boundary checking will continue to do its thing.

Signed-off-by: Eric Farman <[email protected]>
Message-Id: <[email protected]>
Signed-off-by: Cornelia Huck <[email protected]>
lshw pushed a commit to lshw/linux-stable-loongson3 that referenced this issue Mar 20, 2023
Fixes a crash when the report encounters an address that could not be
associated with an mmaped region:

  #0  0x00005555557bdc4a in callchain_srcline (ip=<error reading variable: Cannot access memory at address 0x38>, sym=0x0, map=0x0) at util/machine.c:2329
  loongson-community#1  unwind_entry (entry=entry@entry=0x7fffffff9180, arg=arg@entry=0x7ffff5642498) at util/machine.c:2329
  loongson-community#2  0x00005555558370af in entry (arg=0x7ffff5642498, cb=0x5555557bdb50 <unwind_entry>, thread=<optimized out>, ip=18446744073709551615) at util/unwind-libunwind-local.c:586
  loongson-community#3  get_entries (ui=ui@entry=0x7fffffff9620, cb=0x5555557bdb50 <unwind_entry>, arg=0x7ffff5642498, max_stack=<optimized out>) at util/unwind-libunwind-local.c:703
  loongson-community#4  0x0000555555837192 in _unwind__get_entries (cb=<optimized out>, arg=<optimized out>, thread=<optimized out>, data=<optimized out>, max_stack=<optimized out>) at util/unwind-libunwind-local.c:725
  loongson-community#5  0x00005555557c310f in thread__resolve_callchain_unwind (max_stack=127, sample=0x7fffffff9830, evsel=0x555555c7b3b0, cursor=0x7ffff5642498, thread=0x555555c7f6f0) at util/machine.c:2351
  loongson-community#6  thread__resolve_callchain (thread=0x555555c7f6f0, cursor=0x7ffff5642498, evsel=0x555555c7b3b0, sample=0x7fffffff9830, parent=0x7fffffff97b8, root_al=0x7fffffff9750, max_stack=127) at util/machine.c:2378
  loongson-community#7  0x00005555557ba4ee in sample__resolve_callchain (sample=<optimized out>, cursor=<optimized out>, parent=parent@entry=0x7fffffff97b8, evsel=<optimized out>, al=al@entry=0x7fffffff9750,
      max_stack=<optimized out>) at util/callchain.c:1085

Signed-off-by: Milian Wolff <[email protected]>
Tested-by: Sandipan Das <[email protected]>
Acked-by: Jiri Olsa <[email protected]>
Cc: Jin Yao <[email protected]>
Cc: Namhyung Kim <[email protected]>
Fixes: 2a9d505 ("perf script: Show correct offsets for DWARF-based unwinding")
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
lshw pushed a commit to lshw/linux-stable-loongson3 that referenced this issue Mar 20, 2023
When the function name for an inline frame is invalid, we must not try
to demangle this symbol, otherwise we crash with:

  #0  0x0000555555895c01 in bfd_demangle ()
  loongson-community#1  0x0000555555823262 in demangle_sym (dso=0x555555d92b90, elf_name=0x0, kmodule=0) at util/symbol-elf.c:215
  loongson-community#2  dso__demangle_sym (dso=dso@entry=0x555555d92b90, kmodule=<optimized out>, kmodule@entry=0, elf_name=elf_name@entry=0x0) at util/symbol-elf.c:400
  loongson-community#3  0x00005555557fef4b in new_inline_sym (funcname=0x0, base_sym=0x555555d92b90, dso=0x555555d92b90) at util/srcline.c:89
  loongson-community#4  inline_list__append_dso_a2l (dso=dso@entry=0x555555c7bb00, node=node@entry=0x555555e31810, sym=sym@entry=0x555555d92b90) at util/srcline.c:264
  loongson-community#5  0x00005555557ff27f in addr2line (dso_name=dso_name@entry=0x555555d92430 "/home/milian/.debug/.build-id/f7/186d14bb94f3c6161c010926da66033d24fce5/elf", addr=addr@entry=2888, file=file@entry=0x0,
      line=line@entry=0x0, dso=dso@entry=0x555555c7bb00, unwind_inlines=unwind_inlines@entry=true, node=0x555555e31810, sym=0x555555d92b90) at util/srcline.c:313
  loongson-community#6  0x00005555557ffe7c in addr2inlines (sym=0x555555d92b90, dso=0x555555c7bb00, addr=2888, dso_name=0x555555d92430 "/home/milian/.debug/.build-id/f7/186d14bb94f3c6161c010926da66033d24fce5/elf")
      at util/srcline.c:358

So instead handle the case where we get invalid function names for
inlined frames and use a fallback '??' function name instead.

While this crash was originally reported by Hadrien for rust code, I can
now also reproduce it with trivial C++ code. Indeed, it seems like
libbfd fails to interpret the debug information for the inline frame
symbol name:

  $ addr2line -e /home/milian/.debug/.build-id/f7/186d14bb94f3c6161c010926da66033d24fce5/elf -if b48
  main
  /usr/include/c++/8.2.1/complex:610
  ??
  /usr/include/c++/8.2.1/complex:618
  ??
  /usr/include/c++/8.2.1/complex:675
  ??
  /usr/include/c++/8.2.1/complex:685
  main
  /home/milian/projects/kdab/rnd/hotspot/tests/test-clients/cpp-inlining/main.cpp:39

I've reported this bug upstream and also attached a patch there which
should fix this issue:

https://sourceware.org/bugzilla/show_bug.cgi?id=23715

Reported-by: Hadrien Grasland <[email protected]>
Signed-off-by: Milian Wolff <[email protected]>
Cc: Jin Yao <[email protected]>
Cc: Jiri Olsa <[email protected]>
Cc: Namhyung Kim <[email protected]>
Fixes: a64489c ("perf report: Find the inline stack for a given address")
[ The above 'Fixes:' cset is where originally the problem was
  introduced, i.e.  using a2l->funcname without checking if it is NULL,
  but this current patch fixes the current codebase, i.e. multiple csets
  were applied after a64489c before the problem was reported by Hadrien ]
Link: http://lkml.kernel.org/r/[email protected]
Signed-off-by: Arnaldo Carvalho de Melo <[email protected]>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants