参考论文:
Learning Efficient Convolutional Networks Through Network Slimming
SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications
模型为改进后的yolov3模型(四个yolo检测头,主要增加了一些多尺度连接)在Visdrone数据集上进行实验:
- Pytorch >=1.6.0
- numpy
- opencv-python
- matplotlib
- pillow
- tensorboard
- torchvision
- scipy
- tqdm
CUDA_VISIBLE_DEVICES=0 python train.py --cfg cfg/dense_yolov3_4.cfg --data data/visdrone.data --weights weights/yolov3.weights --epoch 120 --batch-size 16
CUDA_VISIBLE_DEVICES=3 python train.py --cfg cfg/dense_yolov3_4.cfg --data data/visdrone.data --weights weights/best.weights --epoch 300 --batch-size 16 --sr_mode 1 --s 0.003
其中sr_mode表示三种稀疏策略:
- mode==1: 恒定s给bn回传添加额外梯度
- mode==2: 全局s衰减,前50%epoch恒定s,后50%恒定s*alpha
- mode==3: 局部s衰减:前50%epoch恒定s,后50%中,对percent比例的通道保持s,1-percent比例的通道衰减s*alpha
CUDA_VISIBLE_DEVICES=0 python slim_prune.py --cfg cfg/dense_yolov3_4.cfg --data data/visdrone.data --weights weights/best.pt --global_percent 0.8 --layer_keep 0.01 --img_size 800
全局剪80%,评估的图像分辨率为800:
CUDA_VISIBLE_DEVICES=0 python layer_prune.py --cfg cfg/prune_0.8_keep_0.01_dense_yolov3_4.cfg --data data/visdrone.data --weights weights/prune_0.8_keep_0.01_best.weights --shortcuts 10 --img_size 800
剪掉10个shortcut层,评估的图像分辨率为800:
CUDA_VISIBLE_DEVICES=0 python train.py --cfg cfg/prune_10_shortcut_prune_0.8_keep_0.01_dense_yolov3_4.cfg --data data/visdrone.data --weights weights/prune_10_shortcut_prune_0.8_keep_0.01_best.weights --epoch 150 --batch-size 16
训练结果:
最终的结果对比