Copy lsystem directory over to F:\SteamLibrary\steamapps\common\Blender\3.0\scripts\addons or wherever your blender installation is.
In blender go to File->User Preferences->Add-ons and enable "Add Mesh: LSystem" then press the "Save User Settings" button.
Add a mesh via Add->Mesh->LSystem. Change the settings in the LSystem panel to get something halway decent.
Symbol | Interpretation | Example |
---|---|---|
F | Move forward and produce an edge ( a branch segment ) | |
f | Move forward without producing an edge | |
+ | Turn left | |
- | Turn right | |
^ | Pitch up | |
& | Pitch down | |
\ | Roll left | |
/ | Roll right | |
| | Turn around (not implemented yet) | |
$ | Rotate upright | |
[ | Start a branch (push state) | |
] | Complete a branch (pop state) | |
{ | Start a polygon/face from vertices (only applicable to the "surface" pen | |
} | End a polygon/face from vertices (only applicable to the "surface" pen | |
¤ | Set radius | |
~ | Copy an existing blender object (requires the name of the object to be copied as a parameter) | |
! | Decrement the diameter of segments | |
% | Cut off the remainder of the branch | |
: | Start a new blender object | |
; | End current blender object | |
# | Fatten the radius of the branch | |
p | Change pens, requires a value (see table below). | p(subsurf) |
m | Set material, requires the name of the material. Note that the material applies to an entire blender object. If you set the material multiple times for the same object the material value will simply be overwritten. | m(Green) |
s | scale | |
w | warp next copied object | w(2.0) |
£ | randomize angle |
F,+,-,/,,<,>,!,@,#,% use the configured default values in settings panel but this can also be specified directly in the axiom and the production rules. For example +(90) would indicate a 90 degree turn to the left.
Name | |
---|---|
surface | Produces a surface of one or more faces from a set of vertices |
pol | Produces a single polygon |
edge | Produces a single edge between two vertices |
skin | Same as edge but applies a skin modifier automatically. This allows the l-system to set the skin radius. |
subsurf | Same as skin but with a surface subdivision modifier also. Number of subdivisions are set to 3 by default |
subsurfXXX | Same as subsurf but XXX is a number that specifies the number of subdivisions, ie subsurf1 or subsurf5 |
curve | A bezier curve. |
line | Produces a quad |
cylXXX | Produces a cylinder with XXX number of vertices (must be 3 or higher). For example cyl4 produces a cylinder with 4 vertices |
Production rules consist of three fields:
- A module either a single character module or a single character followed by parenthesis and parameters names (ie A(x,y)). The second field is the condition that has to be true if rule is applicable.
- This field is only relevant if the module has parameters. Conditions are expressed as boolean expressions (ie eq(x,0) which would mean the rule applies when x is 0)
- The third field is the result. This what the module in the first field will be replaced with if the condition is true. Mathematical expressions can be used here with parameters if they occur in the module field (see below for supported functions).
Example:
A(x,y): gt(x,1) -> A(mul(x,y),div(x,y))F(x)+(rand(0,y))
Name | Description | Example |
---|---|---|
rand(x,y) | random number between x,y | rand(0,90) |
add(x,y) | addition | add(1,4) = 1+4 |
sub(x,y) | substraction | sub(2,3) = 2-3 |
mul(x,y) | multiply | mul(2,3) = 2*3 |
div(x,y) | divide | div(4,6) = 4/6 |
pow(x,y) | x to the power of y | pow(2,3) = 2^3 |
log(x) | natural logarithm of x | log(12) |
log(x,y) | logarithm of x to the base of y | log(4,2) |
sqrt(x) | square root of x | |
sin(x) | sine of x | |
cos(x) | cosine of x | |
tan(x) | tangent of x | |
eq(x,y) | is equal | eq(1,0) (false) |
gt(x,y) | is x greater than y | gt(1,2) (false) |
gteq(x,y) | is x greater than or equal to y | gteq(2,2) (true) |
lt(x,y) | is x less than y | lt(1,2) (true) |
get(x) | get property x, see property table | get(i) |
Name | Description |
---|---|
i | Instance, current number of instance. Note that the numbering starts from 0. |
iter | Iteration, current number of iteration. Note that the numbering starts from 0. |
If there are several rules that match the same input one of the matching rules will be selected at random.
import lsystem.exec
exec = lsystem.exec.Exec()
exec.set_axiom("p(subsurf)X")
exec.add_rule("X", "F[+X][-X]")
exec.add_rule("X", "\\X")
exec.exec(min_iterations=6)
When running from a script the growth of the lsystem can be animated.
exec.exec(min_iterations=1, max_iterations=5, animate=True)
bpy.context.scene.frame_start=0
bpy.context.scene.frame_end=25
bpy.ops.screen.animation_play()
Animation is achieved by generating the blender objects for all iterations between min_iterations and max_iterations and then setting the hide property to true or false depending on the frame.
See figure 1.10 b in Algorithmic Beauty of Plants on page 11.
Script:
import lsystem.exec
exec = lsystem.exec.Exec()
exec.set_axiom("p(curve)Fr")
exec.add_rule("Fa", "Fr+Fa+Fr")
exec.add_rule("Fr", "Fa-Fr-Fa")
exec.exec(min_iterations=6, angle=60)
GUI:
See figure 1.24 f in Algorithmic Beauty of Plants on page 25.
Script:
import lsystem.exec
import math
exec = lsystem.exec.Exec()
exec.set_axiom("X")
exec.add_rule("X", "F-[[X]+X]+F[+FX]-X")
exec.add_rule("F", "FF")
exec.exec(min_iterations=4, angle=25)
GUI:
See figure 1.25 f in Algorithmic Beauty of Plants on page 26.
Script (colour omitted):
import lsystem.exec
exec = lsystem.exec.Exec()
exec.set_axiom("p(skin)A")
exec.add_rule("A", "[&FaL!A]/////[\FaL!A]///////[&FaL!A]")
exec.add_rule("Fa", "S/////Fa")
exec.add_rule("S", "FaL")
exec.add_rule("L", "[^^:p(surface)-F+F+F-+(180)-F+F+F;]")
exec.exec(min_iterations=7, angle=22.5)
See figure 1.26 in Algorithmic Beauty of Plants on page 27.
Script:
import lsystem.exec
exec = lsystem.exec.Exec()
exec.set_axiom("P")
exec.add_rule("P", "I+[P+R]--//[--L]I[++L]-[PR]++PR")
exec.add_rule("I", "FS[//&&L][//^^L]FS")
exec.add_rule("S", "SFS")
exec.add_rule("L", "[:p(surface)+F-FF-F++(180)+F-FF-F;]")
exec.add_rule("R", "[&&&C/W////W////W////W////W]")
exec.add_rule("C", "FF")
exec.add_rule("W", "[^F][:p(surface)&&&&-F+F+(180)-F+F;]")
exec.exec(min_iterations=5, angle=18)
See figure 1.37 in Algorithmic Beauty of Plants on page 48.
Script:
import lsystem.exec
import math
exec = lsystem.exec.Exec()
exec.set_axiom("p(edge)F(1)")
exec.add_rule("F(x)", "F(mul(x,p1))+F(mul(x,h1))--F(mul(x,h1))+F(mul(x,q1))")
p = 0.3
q = 0.7
h = math.sqrt(p*q)
exec.define("p1", str(p))
exec.define("q1", str(q))
exec.define("h1", str(h))
exec.exec(min_iterations=5, angle=86)
See figure 1.39 in Algorithmic Beauty of Plants on page 49.
Script:
import lsystem.exec
exec = lsystem.exec.Exec()
exec.define("R", "1.456")
exec.set_axiom("p(edge)A(1)")
exec.add_rule("A(s)", "F(s)[+A(div(s,R))][-A(div(s,R))]")
exec.exec(min_iterations=5, angle=85)
See figure 2.6 a in Algorithmic Beauty of Plants on page 56.
As the rules aren't visible in the picture, here they are:
A(l,w) -> ¤(w)F(l)[&(45)B(mul(l,0.6),mul(w,0.707))]/(137.5)A(mul(l,0.9),mul(w,0.707))
B(l,w) -> ¤(w)F(l)[-(45)C(mul(l,0.6),mul(w,0.707))]C(mul(l,0.9),mul(w,0.707))
C(l,w) -> ¤(w)F(l)[+(45)B(mul(l,0.6),mul(w,0.707))]B(mul(l,0.9),mul(w,0.707))
Script:
import lsystem.exec
exec = lsystem.exec.Exec()
exec.define("r1", "0.9")
exec.define("r2", "0.6")
exec.define("a0", "45")
exec.define("a2", "45")
exec.define("d", "137.5")
exec.define("wr", "0.707")
exec.set_axiom("p(skin)A(1,0.1)")
exec.add_rule("A(l,w)", "¤(w)F(l)[&(a0)B(mul(l,r2),mul(w,wr))]/(d)A(mul(l,r1),mul(w,wr))")
exec.add_rule("B(l,w)", "¤(w)F(l)[-(a2)$C(mul(l,r2),mul(w,wr))]C(mul(l,r1),mul(w,wr))")
exec.add_rule("C(l,w)", "¤(w)F(l)[+(a2)$B(mul(l,r2),mul(w,wr))]B(mul(l,r1),mul(w,wr))")
exec.exec(min_iterations=10)
GUI:
See figure 2.7 in Algorithmic Beauty of Plants on page 59.
Script:
import lsystem.lsystem
import lsystem.exec
exec = lsystem.exec.Exec()
exec.define("r1", "0.9")
exec.define("r2", "0.7")
exec.define("a1", "10")
exec.define("a2", "60")
exec.define("wr", "0.707")
exec.set_axiom("p(skin)A(1,1)")
exec.add_rule("A(l,w)", "!(w)F(l)[&(a1)B(mul(l,r1),mul(w,wr))]/(180)[&(a2)B(mul(l,r2),mul(w,wr))]")
exec.add_rule("B(l,w)", "!(w)F(l)[+(a1)$B(mul(l,r1),mul(w,wr))][-(a2)$B(mul(l,r2),mul(w,wr))]")
exec.exec(min_iterations=10)
See figure 2.8 in Algorithmic Beauty of Plants on page 60.
Script (todo: there's no tropism here so it does not look like in the book. Also other bugs):
import lsystem.exec
exec = lsystem.exec.Exec()
exec.define("d1", "94.74")
exec.define("d2", "132.63")
exec.define("a", "18.95")
exec.define("lr", "1.109")
exec.define("vr", "1.732")
exec.set_tropism(Vector((0.0, 0.0, -1.0)), 0.22)
exec.set_axiom("p(skin)¤(0.1)F(0.0001)F(20)/(45)A")
exec.add_rule("A", "¤(mul(0.1,vr))F(5)[&(a)F(5)A]/(d1)[&(a)F(5)A]/(d2)[&(a)F(5)A]")
exec.add_rule("F(l)", "F(mul(l,lr))")
exec.add_rule("¤(w)", "¤(mul(w,vr))")
exec.exec(min_iterations=4)
Surface specification using a tree structure as a framework (Figure 5.4 in Algorithmic Beauty of Plants on page 122.)
import lsystem.exec
exec = lsystem.exec.Exec()
exec.set_axiom("p(surface)[++++F(1.0)] [++F(2.0)] [+F(3.0)] [F(5.0)] [-F(3.0)] [--F(2.0)] [----F(1.0)]")
exec.exec(min_iterations=1, angle=30)
Cordate leaf (Figure 5.5 in Algorithmic Beauty of Plants on page 123.)
import lsystem.exec
exec = lsystem.exec.Exec()
exec.set_axiom("p(surface)[A][B]")
exec.add_rule("A", "[+A{F(0)]F(0)CF(0)}")
exec.add_rule("B", "[-B{F(0)]F(0)CF(0)}")
exec.add_rule("C", "f(1.0)C")
exec.exec(min_iterations=12)
Simple leaf (Figure 5.6 b in Algorithmic Beauty of Plants on page 124)
import lsystem.exec
exec = lsystem.exec.Exec()
exec.define("LA", "5")
exec.define("RA", "1")
exec.define("LB", "0.6")
exec.define("RB", "1.06")
exec.define("PD", "0.25")
exec.set_axiom("p(surface)F(0)A(0)")
exec.add_rule("A(t)", "f(LA,RA)[-B(t)F(0)][A(add(t,1))][+B(t)F(0)]")
exec.add_rule("B(t)", "f(LB,RB)B(sub(t,PD))", condition="gt(t,0)")
exec.add_rule("f(s,r)", "f(mul(s,r),r)")
exec.exec(min_iterations=20, angle=60)
Rose leaf (Figure 5.8 in Algorithmic Beauty of Plants on page 126)
import lsystem.exec
exec = lsystem.exec.Exec()
exec.define("LA", "5")
exec.define("RA", "1.15")
exec.define("LB", "1.3")
exec.define("RB", "1.25")
exec.define("LC", "3")
exec.define("RC", "1.19")
exec.set_axiom("p(surface)s(0.01)[{A(0,0)F(0)}][{A(0,1)F(0)}]")
exec.add_rule("A(t,d)", "F(0)f(LA,RA)F(0)[+B(t)f(LC,RC,t)F(0)}][+B(t){F(0)]A(add(t,1),d)", condition="eq(d,0)")
exec.add_rule("A(t,d)", "F(0)f(LA,RA)F(0)[-B(t)f(LC,RC,t)F(0)}][-B(t){F(0)]A(add(t,1),d)", condition="eq(d,1)")
exec.add_rule("B(t)", "f(LB,RB)B(sub(t,1))", condition="gt(t,0)")
exec.add_rule("f(s,r)", "f(mul(s,r),r)")
exec.add_rule("f(s,r,t)", "f(mul(s,r),r,sub(t,1))", condition="gt(t,1)")
exec.exec(min_iterations=25, angle=60)
Compound leaves (Figure 5.11 b in Algorithmic Beauty of Plants on page 129)
import lsystem.exec
exec = lsystem.exec.Exec()
exec.set_axiom("p(edge)A(0)")
exec.add_rule("A(d)", "A(sub(d,1))", condition="gt(d,0)")
exec.add_rule("A(d)", "F(1)[+A(1)][-A(1)]F(1)A(0)", condition="eq(d,0)")
exec.add_rule("F(a)", "F(mul(a,1.5))")
exec.exec(min_iterations=12)
Configure the turtle to place a sphere when it encounters an X in the lsystem string.
import mathutils
import bmesh
import bpy
import lsystem.exec
import lsystem.util
def sphere(turtle, parameters, bl_obj, obj_base_pairs, context):
mesh = bpy.data.meshes.new("sphere")
obj = bpy.data.objects.new("sphere", mesh)
bm = bmesh.new()
bmesh.ops.create_uvsphere(bm, u_segments=32, v_segments=16, diameter=bl_obj.radius*5)
bm.to_mesh(mesh)
bm.free()
obj.location = lsystem.util.matmul(turtle.transform, mathutils.Vector((0.0, 0.0, 0.0)))
obj.rotation_euler = turtle.transform.to_euler()
base = lsystem.util.link(context, obj)
obj.parent = bl_obj.object
obj_base_pairs.append((obj, base))
exec = lsystem.exec.Exec()
exec.set_axiom("p(subsurf)X")
exec.add_rule("X", "/(rand(0,359))[+FX][-FX]")
exec.add_rule("X", "FX")
exec.set_interpretation("X", sphere)
exec.exec(min_iterations=6)
https://en.wikipedia.org/wiki/L-system
https://www.reddit.com/r/proceduralgeneration/comments/5771ea/making_fractal_trees_in_blender/
https://16bpp.net/blog/post/making-fractal-trees-in-blender
https://github.com/ento/blender-lsystem-addon
http://michelanders.blogspot.se/p/creating-blender-26-python-add-on.html
http://algorithmicbotany.org/papers/#abop
http://algorithmicbotany.org/papers/abop/abop.pdf
http://archive.org/stream/BrainfillingCurves-AFractalBestiary/BrainFilling#page/n0/mode/2up