Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improved performance of determinant #1118

Merged
merged 1 commit into from
May 31, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
66 changes: 29 additions & 37 deletions lib/function/matrix/det.js
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ function factory (type, config, load, typed) {
var subtract = load(require('../arithmetic/subtract'));
var multiply = load(require('../arithmetic/multiply'));
var unaryMinus = load(require('../arithmetic/unaryMinus'));
var lup = load(require('../algebra/decomposition/lup'));

/**
* Calculate the determinant of a matrix.
Expand Down Expand Up @@ -116,49 +117,40 @@ function factory (type, config, load, typed) {
);
}
else {
// this is an n x n matrix
var compute_mu = function (matrix) {
var i, j;

// Compute the matrix with zero lower triangle, same upper triangle,
// and diagonals given by the negated sum of the below diagonal
// elements.
var mu = new Array(matrix.length);
var sum = 0;
for (i = 1; i < matrix.length; i++) {
sum = add(sum, matrix[i][i]);
}

for (i = 0; i < matrix.length; i++) {
mu[i] = new Array(matrix.length);
mu[i][i] = unaryMinus(sum);

for (j = 0; j < i; j++) {
mu[i][j] = 0; // TODO: make bignumber 0 in case of bignumber computation
}
// Compute the LU decomposition
var decomp = lup(matrix);

for (j = i + 1; j < matrix.length; j++) {
mu[i][j] = matrix[i][j];
}
// The determinant is the product of the diagonal entries of U (and those of L, but they are all 1)
var det = decomp.U[0][0];
for(var i=1; i<rows; i++) {
det = multiply(det, decomp.U[i][i]);
}

if (i+1 < matrix.length) {
sum = subtract(sum, matrix[i + 1][i + 1]);
}
// The determinant will be multiplied by 1 or -1 depending on the parity of the permutation matrix.
// This can be determined by counting the cycles. This is roughly a linear time algorithm.
var evenCycles=0;
var i=0;
var visited=[];
while(true) {
while(visited[i]) {
i++;
}
if(i >= rows) break;
var j=i;
var cycleLen = 0;
while(!visited[decomp.p[j]]) {
visited[decomp.p[j]] = true;
j = decomp.p[j];
cycleLen++;
}
if(cycleLen % 2 === 0) {
evenCycles++;
}

return mu;
};

var fa = matrix;
for (var i = 0; i < rows - 1; i++) {
fa = multiply(compute_mu(fa), matrix);
}

if (rows % 2 == 0) {
return unaryMinus(fa[0][0]);
} else {
return fa[0][0];
}
return evenCycles % 2 === 0 ? det : unaryMinus(det);

}
}
}
Expand Down
20 changes: 20 additions & 0 deletions test/function/matrix/det.test.js
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ var math = require('../../../index');
var BigNumber = math.type.BigNumber;
var Complex = math.type.Complex;
var DenseMatrix = math.type.DenseMatrix;
var SparseMatrix = math.type.SparseMatrix;
var det = math.det;
var diag = math.diag;
var eye = math.eye;
Expand Down Expand Up @@ -32,9 +33,28 @@ describe('det', function() {
[1,7,5,9,7],
[2,7,4,3,7]
]), -1176);
approx.equal(det([
[0,7,0,3,7],
[1,7,4,3,7],
[0,7,4,3,0],
[1,7,5,9,7],
[2,7,4,3,7]
]), 1176);
approx.equal(det(diag([4,-5,6])), -120);
});

it('should return the determinant of a sparse matrix', function() {

approx.equal(det(new SparseMatrix([
[1,7,4,3,7],
[0,7,0,3,7],
[0,7,4,3,0],
[1,7,5,9,7],
[2,7,4,3,7]
])), -1176);

});

it('should return 1 for the identity matrix',function() {
assert.equal(det(eye(7)), 1);
assert.equal(det(eye(2)), 1);
Expand Down