Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Generalize team split 2D example for any # of PEs #13

Merged
merged 1 commit into from
Apr 5, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
100 changes: 48 additions & 52 deletions content/shmem_team_split_2d.tex
Original file line number Diff line number Diff line change
Expand Up @@ -146,100 +146,96 @@
\apicexample
{The following example demonstrates the use of 2D Cartesian split in a
\Cstd[11] program. This example shows how multiple 2D splits can be used
to generate a 3D Cartesian split. This method can be extrapolated to
generate splits of any number of dimensions.}
to generate a 3D Cartesian split.}
{./example_code/shmem_team_split_2D.c}
{
The example above splits \LibHandleRef{SHMEM\_TEAM\_WORLD} into a 3D team
with dimensions 3x4xN. For example, if \VAR{npes} = 16, \VAR{xdim} = 3,
and \VAR{ydim} = 4, then the final dimensions are 3x4x2. In this case, the
first split of \LibHandleRef{SHMEM\_TEAM\_WORLD} results in 6 \VAR{xteams}
and 3 \VAR{yzteams}:
with dimensions \VAR{xdim}, \VAR{ydim}, and \VAR{zdim}, where each
dimension is calculated using the functions, \FUNC{find\_xy\_dims} and
\FUNC{find\_xyz\_dims}. When running with 12 \acp{PE}, the dimensions
are 3x2x2, respectively, and the first split of
\LibHandleRef{SHMEM\_TEAM\_WORLD} results in 4 \VAR{xteams} and 3
\VAR{yzteams}:

\begin{center}
\begin{tabular}{|l|l|l|l|l|}
\hline
\multicolumn{2}{|c|}{} & \multicolumn{3}{c|}{\VAR{yzteam}} \\ \cline{3-5}
\multicolumn{2}{|c|}{} & \VAR{x} = 0 & \VAR{x} = 1 & \VAR{x} = 2 \\ \hline
\multirow{6}{*}{\VAR{xteam}} & \VAR{yz} = 0 & 0 & 1 & 2 \\ \cline{2-5}
\multirow{4}{*}{\VAR{xteam}} & \VAR{yz} = 0 & 0 & 1 & 2 \\ \cline{2-5}
& \VAR{yz} = 1 & 3 & 4 & 5 \\ \cline{2-5}
& \VAR{yz} = 2 & 6 & 7 & 8 \\ \cline{2-5}
& \VAR{yz} = 3 & 9 & 10 & 11 \\ \cline{2-5}
& \VAR{yz} = 4 & 12 & 13 & 14 \\ \cline{2-5}
& \VAR{yz} = 5 & 15 \\
& \VAR{yz} = 3 & 9 & 10 & 11 \\ \cline{2-5}
\cline{0-2}
\end{tabular}
\end{center}

The second split of \VAR{yzteam} for \VAR{x} = 0, \VAR{ydim} = 4 results in 2
\VAR{yteams} and 4 \VAR{zteams}:
The second split of \VAR{yzteam} for \VAR{x} = 0, \VAR{ydim} = 2 results in 2
\VAR{yteams} and 2 \VAR{zteams}:


\begin{center}
\begin{tabular}{|l|l|l|l|l|l|}
\begin{tabular}{|l|l|l|l|}
\hline
\multicolumn{2}{|c|}{} & \multicolumn{4}{c|}{\VAR{zteam}} \\ \cline{3-6}
\multicolumn{2}{|c|}{} & \VAR{y} = 0 & \VAR{y} = 1 & \VAR{y} = 2 & \VAR{y} = 3 \\ \hline
\multirow{2}{*}{\VAR{yteam}} & \VAR{z} = 0 & 0 & 3 & 6 & 9 \\ \cline{2-6}
& \VAR{z} = 1 & 12 & 15 \\
\multicolumn{2}{|c|}{} & \multicolumn{2}{c|}{\VAR{zteam}} \\ \cline{3-4}
\multicolumn{2}{|c|}{} & \VAR{y} = 0 & \VAR{y} = 1 \\ \hline
\multirow{2}{*}{\VAR{yteam}} & \VAR{z} = 0 & 0 & 3 \\ \cline{2-4}
& \VAR{z} = 1 & 6 & 9 \\
\cline{0-3}
\end{tabular}
\end{center}

The second split of \VAR{yzteam} for \VAR{x} = 1, \VAR{ydim} = 4 results in
2 \VAR{yteams} and 4 \VAR{zteams}:
The second split of \VAR{yzteam} for \VAR{x} = 1, \VAR{ydim} = 2 results in
2 \VAR{yteams} and 2 \VAR{zteams}:

\begin{center}
\begin{tabular}{|l|l|l|l|l|l|}
\begin{tabular}{|l|l|l|l|}
\hline
\multicolumn{2}{|c|}{} & \multicolumn{4}{c|}{\VAR{zteam}} \\ \cline{3-6}
\multicolumn{2}{|c|}{} & \VAR{y} = 0 & \VAR{y} = 1 & \VAR{y} = 2 & \VAR{y} = 3 \\ \hline
\multirow{2}{*}{\VAR{yteam}} & \VAR{z} = 0 & 1 & 4 & 7 & 10 \\ \cline{2-6}
& \VAR{z} = 1 & 13 \\
\cline{0-2}
\multicolumn{2}{|c|}{} & \multicolumn{2}{c|}{\VAR{zteam}} \\ \cline{3-4}
\multicolumn{2}{|c|}{} & \VAR{y} = 0 & \VAR{y} = 1 \\ \hline
\multirow{2}{*}{\VAR{yteam}} & \VAR{z} = 0 & 1 & 4 \\ \cline{2-4}
& \VAR{z} = 1 & 7 & 10 \\
\cline{0-3}
\end{tabular}
\end{center}

The second split of \VAR{yzteam} for \VAR{x} = 2, \VAR{ydim} = 4 results in
2 \VAR{yteams} and 4 \VAR{zteams}:
The second split of \VAR{yzteam} for \VAR{x} = 2, \VAR{ydim} = 2 results in
2 \VAR{yteams} and 2 \VAR{zteams}:

\begin{center}
\begin{tabular}{|l|l|l|l|l|l|}
\begin{tabular}{|l|l|l|l|}
\hline
\multicolumn{2}{|c|}{} & \multicolumn{4}{c|}{\VAR{zteam}} \\ \cline{3-6}
\multicolumn{2}{|c|}{} & \VAR{y} = 0 & \VAR{y} = 1 & \VAR{y} = 2 & \VAR{y} = 3 \\ \hline
\multirow{2}{*}{\VAR{yteam}} & \VAR{z} = 0 & 2 & 5 & 8 & 11 \\ \cline{2-6}
& \VAR{z} = 1 & 14 \\
\cline{0-2}
\multicolumn{2}{|c|}{} & \multicolumn{2}{c|}{\VAR{zteam}} \\ \cline{3-4}
\multicolumn{2}{|c|}{} & \VAR{y} = 0 & \VAR{y} = 1 \\ \hline
\multirow{2}{*}{\VAR{yteam}} & \VAR{z} = 0 & 2 & 5 \\ \cline{2-4}
& \VAR{z} = 1 & 8 & 11 \\
\cline{0-3}
\end{tabular}
\end{center}

The final number of teams for each dimension are:
\begin{itemize}
\item 6 \VAR{xteams}: these are teams where (\VAR{z},\VAR{y}) is fixed and \VAR{x} varies.
\item 4 \VAR{xteams}: these are teams where (\VAR{z},\VAR{y}) is fixed and \VAR{x} varies.
\item 6 \VAR{yteams}: these are teams where (\VAR{x},\VAR{z}) is fixed and \VAR{y} varies.
\item 12 \VAR{zteams}: these are teams where (\VAR{x},\VAR{y}) is fixed and \VAR{z} varies.
\item 6 \VAR{zteams}: these are teams where (\VAR{x},\VAR{y}) is fixed and \VAR{z} varies.
\end{itemize}

The expected output is: \\
The expected output with 12 \acp{PE} is: \\
\begin{small}
\texttt{
(0, 0, 0) is me = 0 \\
(1, 0, 0) is me = 1 \\
(2, 0, 0) is me = 2 \\
(0, 1, 0) is me = 3 \\
(1, 1, 0) is me = 4 \\
(2, 1, 0) is me = 5 \\
(0, 2, 0) is me = 6 \\
(1, 2, 0) is me = 7 \\
(2, 2, 0) is me = 8 \\
(0, 3, 0) is me = 9 \\
(1, 3, 0) is me = 10 \\
(2, 3, 0) is me = 11 \\
(0, 0, 1) is me = 12 \\
(1, 0, 1) is me = 13 \\
(2, 0, 1) is me = 14 \\
(0, 1, 1) is me = 15
xdim = 3, ydim = 2, zdim = 2 \\
(0, 0, 0) is mype = 0 \\
(1, 0, 0) is mype = 1 \\
(2, 0, 0) is mype = 2 \\
(0, 1, 0) is mype = 3 \\
(1, 1, 0) is mype = 4 \\
(2, 1, 0) is mype = 5 \\
(0, 0, 1) is mype = 6 \\
(1, 0, 1) is mype = 7 \\
(2, 0, 1) is mype = 8 \\
(0, 1, 1) is mype = 9 \\
(1, 1, 1) is mype = 10 \\
(2, 1, 1) is mype = 11 \\
}
\end{small}
}
Expand Down
33 changes: 26 additions & 7 deletions example_code/shmem_team_split_2D.c
Original file line number Diff line number Diff line change
@@ -1,20 +1,39 @@
#include <shmem.h>
#include <stdio.h>
#include <math.h>

/* Find x and y such that x * y == npes and abs(x - y) is minimized. */
void find_xy_dims(int npes, int *x, int *y) {
for(int divider = ceil(sqrt(npes)); divider >= 1; divider--)
if (npes % divider == 0) {
*x = divider;
*y = npes / divider;
return;
}
}

/* Find x, y, and z such that x * y * z == npes and
* abs(x - y) + abs(x - z) + abs(y - z) is minimized. */
void find_xyz_dims(int npes, int *x, int *y, int *z) {
for(int divider = ceil(cbrt(npes)); divider >= 1; divider--)
if (npes % divider == 0) {
*x = divider;
find_xy_dims(npes / divider, y, z);
return;
}
}

int main(void) {
int xdim = 3;
int ydim = 4;
int xdim, ydim, zdim;

shmem_init();
int mype = shmem_my_pe();
int npes = shmem_n_pes();

if (npes < (xdim * ydim)) {
printf("Not enough PEs to create 4x3xN layout\n");
exit(1);
}
find_xyz_dims(npes, &xdim, &ydim, &zdim);

if (shmem_my_pe() == 0) printf("xdim = %d, ydim = %d, zdim = %d\n", xdim, ydim, zdim);

int zdim = (npes / (xdim * ydim)) + (((npes % (xdim * ydim)) > 0) ? 1 : 0);
shmem_team_t xteam, yzteam, yteam, zteam;

shmem_team_split_2d(SHMEM_TEAM_WORLD, xdim, NULL, 0, &xteam, NULL, 0, &yzteam);
Expand Down