Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CPU] Do not set lowering_config if they can't share common configs. #14838

Merged
merged 2 commits into from
Aug 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions compiler/src/iree/compiler/Codegen/LLVMCPU/KernelDispatch.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2168,6 +2168,21 @@ static void setLoweringConfigForComputeOps(func::FuncOp entryPointFn,
auto rootLoweringConfig = getLoweringConfig(rootOperation);
auto distTileSizes = rootLoweringConfig.getTileSizeVals(0);
auto tileAndFuseSizes = rootLoweringConfig.getTileSizeVals(1);

// multi-lowering config works only if all the operations can share the same
// distribution and TileAndFuse tile sizes.
for (auto op : computeOps) {
auto iterTypes = cast<TilingInterface>(op).getLoopIteratorTypes();
for (auto [idx, iterType] : llvm::enumerate(iterTypes)) {
if (idx >= tileAndFuseSizes.size())
break;
if (iterType == utils::IteratorType::parallel)
continue;
if (distTileSizes[idx] || tileAndFuseSizes[idx])
return;
}
}

auto targetAttr = IREE::HAL::ExecutableTargetAttr::lookup(entryPointFn);
auto targetMLTransInfo =
TargetMLTransformInfo::getTargetMLTransformInfo(targetAttr);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1889,3 +1889,51 @@ hal.executable private @no_compute_ops {
// CHECK: hal.executable private @no_compute_ops
// CHECK: hal.executable.export public @test
// CHECK-SAME: translation_info = #[[TRANSLATION]]

// -----

#executable_target_system_elf_x86_64_ = #hal.executable.target<"llvm-cpu", "system-elf-x86_64", {cpu = "cascadelake", cpu_features = "", data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128", link_embedded = false, native_vector_size = 64 : index, target_triple = "x86_64-unknown-linux-gnu", ukernels = false}>
#map = affine_map<(d0, d1) -> (d0, d1)>
#map1 = affine_map<(d0, d1) -> (d0)>
#pipeline_layout = #hal.pipeline.layout<push_constants = 0, sets = [<0, bindings = [<0, storage_buffer, ReadOnly>, <1, storage_buffer, ReadOnly>, <2, storage_buffer>]>]>

hal.executable private @non_trivial_program {
hal.executable.variant public @system_elf_x86_64, target = #executable_target_system_elf_x86_64_ {
hal.executable.export public @non_trivial_program ordinal(0) layout(#pipeline_layout) {
^bb0(%arg0: !hal.device):
%c1 = arith.constant 1 : index
hal.return %c1, %c1, %c1 : index, index, index
}
builtin.module {
func.func @non_trivial_program() {
%c0 = arith.constant 0 : index
%cst = arith.constant 0.000000e+00 : f32
%0 = hal.interface.binding.subspan set(0) binding(0) type(storage_buffer) alignment(64) offset(%c0) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<128x1x128x1xf32>>
%1 = hal.interface.binding.subspan set(0) binding(1) type(storage_buffer) alignment(64) offset(%c0) flags(ReadOnly) : !flow.dispatch.tensor<readonly:tensor<128x1xf32>>
%2 = hal.interface.binding.subspan set(0) binding(2) type(storage_buffer) alignment(64) offset(%c0) : !flow.dispatch.tensor<writeonly:tensor<1x1xf32>>
%3 = flow.dispatch.tensor.load %0, offsets = [0, 0, 0, 0], sizes = [128, 1, 128, 1], strides = [1, 1, 1, 1] : !flow.dispatch.tensor<readonly:tensor<128x1x128x1xf32>> -> tensor<128x1x128x1xf32>
%4 = flow.dispatch.tensor.load %1, offsets = [0, 0], sizes = [128, 1], strides = [1, 1] : !flow.dispatch.tensor<readonly:tensor<128x1xf32>> -> tensor<128x1xf32>
%5 = tensor.empty() : tensor<1x1xf32>
%6 = tensor.empty() : tensor<128xf32>
%7 = linalg.fill ins(%cst : f32) outs(%6 : tensor<128xf32>) -> tensor<128xf32>
%8 = linalg.fill ins(%cst : f32) outs(%5 : tensor<1x1xf32>) -> tensor<1x1xf32>
%collapsed = tensor.collapse_shape %3 [[0, 1], [2, 3]] : tensor<128x1x128x1xf32> into tensor<128x128xf32>
%9 = linalg.generic {indexing_maps = [#map, #map1], iterator_types = ["parallel", "reduction"]} ins(%collapsed : tensor<128x128xf32>) outs(%7 : tensor<128xf32>) {
^bb0(%in: f32, %out: f32):
%11 = arith.addf %out, %in : f32
linalg.yield %11 : f32
} -> tensor<128xf32>
%expanded = tensor.expand_shape %9 [[0, 1]] : tensor<128xf32> into tensor<1x128xf32>
%10 = linalg.matmul ins(%expanded, %4 : tensor<1x128xf32>, tensor<128x1xf32>) outs(%8 : tensor<1x1xf32>) -> tensor<1x1xf32>
flow.dispatch.tensor.store %10, %2, offsets = [0, 0], sizes = [1, 1], strides = [1, 1] : tensor<1x1xf32> -> !flow.dispatch.tensor<writeonly:tensor<1x1xf32>>
return
}
}
}
}
// CHECK-DAG: #[[CONFIG:.+]] = #iree_codegen.lowering_config<tile_sizes = {{\[}}[0, 0, 0], [8, 32, 0], [0, 0, 16], [0, 0, 0]]>
// CHECK-NOT: lowering_config
// CHECK: hal.executable.export public @non_trivial_program
// CHECK-SAME: translation_info = #[[TRANSLATION]]
// CHECK: linalg.matmul
// CHECK-SAME: lowering_config = #[[CONFIG]]
Loading