Skip to content

Commit

Permalink
Fix canonical model --model_type in examples (#30480)
Browse files Browse the repository at this point in the history
Fix --model_type in examples
  • Loading branch information
amyeroberts authored May 1, 2024
1 parent 3c69d81 commit bbaa8ce
Show file tree
Hide file tree
Showing 7 changed files with 52 additions and 52 deletions.
2 changes: 1 addition & 1 deletion docs/source/es/converting_tensorflow_models.md
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ Aquí hay un ejemplo del proceso para convertir un modelo OpenAI GPT-2 pre-entre
```bash
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/openai-community/gpt2/pretrained/weights

transformers-cli convert --model_type openai-community/gpt2 \
transformers-cli convert --model_type gpt2 \
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT2_CONFIG] \
Expand Down
26 changes: 13 additions & 13 deletions docs/source/it/converting_tensorflow_models.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,12 +13,12 @@ rendered properly in your Markdown viewer.

# Convertire checkpoint di Tensorflow

È disponibile un'interfaccia a linea di comando per convertire gli originali checkpoint di Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM
È disponibile un'interfaccia a linea di comando per convertire gli originali checkpoint di Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM
in modelli che possono essere caricati utilizzando i metodi `from_pretrained` della libreria.

<Tip>

A partire dalla versione 2.3.0 lo script di conversione è parte di transformers CLI (**transformers-cli**), disponibile in ogni installazione
A partire dalla versione 2.3.0 lo script di conversione è parte di transformers CLI (**transformers-cli**), disponibile in ogni installazione
di transformers >=2.3.0.

La seguente documentazione riflette il formato dei comandi di **transformers-cli convert**.
Expand All @@ -27,19 +27,19 @@ La seguente documentazione riflette il formato dei comandi di **transformers-cli

## BERT

Puoi convertire qualunque checkpoint Tensorflow di BERT (in particolare
[i modeli pre-allenati rilasciati da Google](https://github.com/google-research/bert#pre-trained-models))
in un file di salvataggio Pytorch utilizzando lo script
Puoi convertire qualunque checkpoint Tensorflow di BERT (in particolare
[i modeli pre-allenati rilasciati da Google](https://github.com/google-research/bert#pre-trained-models))
in un file di salvataggio Pytorch utilizzando lo script
[convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py).

Questo CLI prende come input un checkpoint di Tensorflow (tre files che iniziano con `bert_model.ckpt`) ed il relativo
Questo CLI prende come input un checkpoint di Tensorflow (tre files che iniziano con `bert_model.ckpt`) ed il relativo
file di configurazione (`bert_config.json`), crea un modello Pytorch per questa configurazione, carica i pesi dal
checkpoint di Tensorflow nel modello di Pytorch e salva il modello che ne risulta in un file di salvataggio standard di Pytorch che
checkpoint di Tensorflow nel modello di Pytorch e salva il modello che ne risulta in un file di salvataggio standard di Pytorch che
può essere importato utilizzando `from_pretrained()` (vedi l'esempio nel
[quicktour](quicktour) , [run_glue.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_glue.py) ).

Devi soltanto lanciare questo script di conversione **una volta** per ottenere un modello Pytorch. Dopodichè, potrai tralasciare
il checkpoint di Tensorflow (i tre files che iniziano con `bert_model.ckpt`), ma assicurati di tenere il file di configurazione
Devi soltanto lanciare questo script di conversione **una volta** per ottenere un modello Pytorch. Dopodichè, potrai tralasciare
il checkpoint di Tensorflow (i tre files che iniziano con `bert_model.ckpt`), ma assicurati di tenere il file di configurazione
(`bert_config.json`) ed il file di vocabolario (`vocab.txt`) in quanto queste componenti sono necessarie anche per il modello di Pytorch.

Per lanciare questo specifico script di conversione avrai bisogno di un'installazione di Tensorflow e di Pytorch
Expand All @@ -59,11 +59,11 @@ Puoi scaricare i modelli pre-allenati di Google per la conversione [qua](https:/

## ALBERT

Per il modello ALBERT, converti checkpoint di Tensoflow in Pytorch utilizzando lo script
Per il modello ALBERT, converti checkpoint di Tensoflow in Pytorch utilizzando lo script
[convert_albert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py).

Il CLI prende come input un checkpoint di Tensorflow (tre files che iniziano con `model.ckpt-best`) e i relativi file di
configurazione (`albert_config.json`), dopodichè crea e salva un modello Pytorch. Per lanciare questa conversione
Il CLI prende come input un checkpoint di Tensorflow (tre files che iniziano con `model.ckpt-best`) e i relativi file di
configurazione (`albert_config.json`), dopodichè crea e salva un modello Pytorch. Per lanciare questa conversione
avrai bisogno di un'installazione di Tensorflow e di Pytorch.

Ecco un esempio del procedimento di conversione di un modello `ALBERT Base` pre-allenato:
Expand Down Expand Up @@ -97,7 +97,7 @@ Ecco un esempio del processo di conversione di un modello OpenAI GPT-2 pre-allen

```bash
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/openai-community/gpt2/pretrained/weights
transformers-cli convert --model_type openai-community/gpt2 \
transformers-cli convert --model_type gpt2 \
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT2_CONFIG] \
Expand Down
6 changes: 3 additions & 3 deletions docs/source/pt/converting_tensorflow_models.md
Original file line number Diff line number Diff line change
Expand Up @@ -30,11 +30,11 @@ A documentação abaixo reflete o formato do comando **transformers-cli convert*

## BERT

Você pode converter qualquer checkpoint do BERT em TensorFlow (em particular [os modelos pré-treinados lançados pelo Google](https://github.com/google-research/bert#pre-trained-models)) em um arquivo PyTorch usando um
Você pode converter qualquer checkpoint do BERT em TensorFlow (em particular [os modelos pré-treinados lançados pelo Google](https://github.com/google-research/bert#pre-trained-models)) em um arquivo PyTorch usando um
[convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py) script.

Esta Interface de Linha de Comando (CLI) recebe como entrada um checkpoint do TensorFlow (três arquivos começando com `bert_model.ckpt`) e o
arquivo de configuração (`bert_config.json`), e então cria um modelo PyTorch para esta configuração, carrega os pesos
arquivo de configuração (`bert_config.json`), e então cria um modelo PyTorch para esta configuração, carrega os pesos
do checkpoint do TensorFlow no modelo PyTorch e salva o modelo resultante em um arquivo PyTorch que pode
ser importado usando `from_pretrained()` (veja o exemplo em [quicktour](quicktour) , [run_glue.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_glue.py) ).

Expand Down Expand Up @@ -102,7 +102,7 @@ Aqui está um exemplo do processo de conversão para um modelo OpenAI GPT-2 pré
```bash
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/openai-community/gpt2/pretrained/weights

transformers-cli convert --model_type openai-community/gpt2 \
transformers-cli convert --model_type gpt2 \
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT2_CONFIG] \
Expand Down
16 changes: 8 additions & 8 deletions examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ limitations under the License.

We host a wide range of example scripts for multiple learning frameworks. Simply choose your favorite: [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow), [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch) or [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax).

We also have some [research projects](https://github.com/huggingface/transformers/tree/main/examples/research_projects), as well as some [legacy examples](https://github.com/huggingface/transformers/tree/main/examples/legacy). Note that unlike the main examples these are not actively maintained, and may require specific older versions of dependencies in order to run.
We also have some [research projects](https://github.com/huggingface/transformers/tree/main/examples/research_projects), as well as some [legacy examples](https://github.com/huggingface/transformers/tree/main/examples/legacy). Note that unlike the main examples these are not actively maintained, and may require specific older versions of dependencies in order to run.

While we strive to present as many use cases as possible, the example scripts are just that - examples. It is expected that they won't work out-of-the-box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs. To help you with that, most of the examples fully expose the preprocessing of the data, allowing you to tweak and edit them as required.

Expand Down Expand Up @@ -97,16 +97,16 @@ and run the example command as usual afterward.

## Running the Examples on Remote Hardware with Auto-Setup

[run_on_remote.py](./run_on_remote.py) is a script that launches any example on remote self-hosted hardware,
with automatic hardware and environment setup. It uses [Runhouse](https://github.com/run-house/runhouse) to launch
on self-hosted hardware (e.g. in your own cloud account or on-premise cluster) but there are other options
for running remotely as well. You can easily customize the example used, command line arguments, dependencies,
[run_on_remote.py](./run_on_remote.py) is a script that launches any example on remote self-hosted hardware,
with automatic hardware and environment setup. It uses [Runhouse](https://github.com/run-house/runhouse) to launch
on self-hosted hardware (e.g. in your own cloud account or on-premise cluster) but there are other options
for running remotely as well. You can easily customize the example used, command line arguments, dependencies,
and type of compute hardware, and then run the script to automatically launch the example.

You can refer to
You can refer to
[hardware setup](https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup)
for more information about hardware and dependency setup with Runhouse, or this
[Colab tutorial](https://colab.research.google.com/drive/1sh_aNQzJX5BKAdNeXthTNGxKz7sM9VPc) for a more in-depth
[Colab tutorial](https://colab.research.google.com/drive/1sh_aNQzJX5BKAdNeXthTNGxKz7sM9VPc) for a more in-depth
walkthrough.

You can run the script with the following commands:
Expand All @@ -118,7 +118,7 @@ pip install runhouse
# For an on-demand V100 with whichever cloud provider you have configured:
python run_on_remote.py \
--example pytorch/text-generation/run_generation.py \
--model_type=openai-community/gpt2 \
--model_type=gpt2 \
--model_name_or_path=openai-community/gpt2 \
--prompt "I am a language model and"

Expand Down
Loading

0 comments on commit bbaa8ce

Please sign in to comment.