Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add MBart support for BetterTransformer #516

Merged
merged 10 commits into from
Nov 30, 2022
2 changes: 2 additions & 0 deletions optimum/bettertransformer/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
AlbertLayerBetterTransformer,
BartEncoderLayerBetterTransformer,
BertLayerBetterTransformer,
MBartEncoderLayerBetterTransformer,
DistilBertLayerBetterTransformer,
FSMTEncoderLayerBetterTransformer,
ViltLayerBetterTransformer,
Expand All @@ -43,6 +44,7 @@
"AlbertLayer": AlbertLayerBetterTransformer,
# Bart family
"BartEncoderLayer": BartEncoderLayerBetterTransformer,
"MBartEncoderLayer": MBartEncoderLayerBetterTransformer,
# "PLBartEncoderLayer": bart.BartEncoderLayerBetterTransformer,
# "MarianEncoderLayer": bart.BartEncoderLayerBetterTransformer,
# "TimeSeriesTransformerEncoderLayer": bart.BartEncoderLayerBetterTransformer,
Expand Down
108 changes: 108 additions & 0 deletions optimum/bettertransformer/models/encoder_models.py
Original file line number Diff line number Diff line change
Expand Up @@ -343,6 +343,114 @@ def forward(self, hidden_states, attention_mask, position_bias=None, *_, **__):
hidden_states = hidden_states.to_padded_tensor(0.0)
return (hidden_states,)

class MBartEncoderLayerBetterTransformer(BetterTransformerBaseLayer):
def __init__(self, mbart_layer, config):
r"""
A simple conversion of the `MBartEncoderLayer` to its `BetterTransformer` implementation.
Args:
mbart_layer (`torch.nn.Module`):
The original `MBartEncoderLayer` where the weights needs to be retrieved.
"""
super().__init__(config)
# In_proj layer
self.in_proj_weight = nn.Parameter(
torch.cat(
[
mbart_layer.self_attn.q_proj.weight,
mbart_layer.self_attn.k_proj.weight,
mbart_layer.self_attn.v_proj.weight,
]
)
)

self.in_proj_bias = nn.Parameter(
torch.cat(
[
mbart_layer.self_attn.q_proj.bias,
mbart_layer.self_attn.k_proj.bias,
mbart_layer.self_attn.v_proj.bias,
]
)
)

# Out proj layer
self.out_proj_weight = mbart_layer.self_attn.out_proj.weight
self.out_proj_bias = mbart_layer.self_attn.out_proj.bias

# Linear layer 1
self.linear1_weight = mbart_layer.fc1.weight
self.linear1_bias = mbart_layer.fc1.bias

# Linear layer 2
self.linear2_weight = mbart_layer.fc2.weight
self.linear2_bias = mbart_layer.fc2.bias

# Layer norm 1
self.norm1_eps = mbart_layer.self_attn_layer_norm.eps
self.norm1_weight = mbart_layer.self_attn_layer_norm.weight
self.norm1_bias = mbart_layer.self_attn_layer_norm.bias

# Layer norm 2
self.norm2_eps = mbart_layer.final_layer_norm.eps
self.norm2_weight = mbart_layer.final_layer_norm.weight
self.norm2_bias = mbart_layer.final_layer_norm.bias

# Model hyper parameters
self.num_heads = mbart_layer.self_attn.num_heads
self.embed_dim = mbart_layer.self_attn.embed_dim

# Last step: set the last layer to `False` -> this will be set to `True` when converting the model
self.is_last_layer = False

ravenouse marked this conversation as resolved.
Show resolved Hide resolved
self.validate_bettertransformer()

def forward(self, hidden_states, attention_mask, position_bias=None, *_, **__):
r"""
This is just a wrapper around the forward function proposed in:
https://github.com/huggingface/transformers/pull/19553
"""
super().forward_checker()

if hidden_states.is_nested:
attention_mask = None

if attention_mask is not None:
# attention mask comes in with values 0 and -inf. we convert to torch.nn.TransformerEncoder style bool mask
# 0->false->keep this token -inf->true->mask this token
if len(attention_mask.shape) == 4:
attention_mask = attention_mask.squeeze(1)[:, 0]
attention_mask = attention_mask.bool()
attention_mask = torch.reshape(attention_mask, (attention_mask.shape[0], attention_mask.shape[-1]))
seqlen = attention_mask.shape[1]
lengths = torch.sum(~attention_mask, 1)
if not all([l == seqlen for l in lengths]):
hidden_states = torch._nested_tensor_from_mask(hidden_states, ~attention_mask)
attention_mask = None

hidden_states = torch._transformer_encoder_layer_fwd(
hidden_states,
self.embed_dim,
self.num_heads,
self.in_proj_weight,
self.in_proj_bias,
self.out_proj_weight,
self.out_proj_bias,
self.use_gelu,
self.norm_first,
self.norm1_eps,
self.norm1_weight,
self.norm1_bias,
self.norm2_weight,
self.norm2_bias,
self.linear1_weight,
self.linear1_bias,
self.linear2_weight,
self.linear2_bias,
attention_mask,
)
if hidden_states.is_nested and self.is_last_layer:
hidden_states = hidden_states.to_padded_tensor(0.0)
return (hidden_states,)

class DistilBertLayerBetterTransformer(BetterTransformerBaseLayer):
def __init__(self, bert_layer, config):
Expand Down