This repository is the source code of the paper "Reinforcement Learned Distributed Multi-Robot Navigation with Reciprocal Velocity Obstacle Shaped Rewards" [RA-Letter]
PDF_ieee
| PDF_arxiv
| Video_Youtube
| Video_Bilibili
Circle 10 | Circle 16 | Circle 20 |
---|---|---|
Random 10 | Random 16 | Circle 20 |
---|---|---|
- Python >= 3.8
- Pytorch >= 1.6.0
- intelligent-robot-simulator == v2.5
git clone -b v2.5 https://github.com/hanruihua/intelligent-robot-simulator.git
cd intelligent-robot-simulator
pip install -e .
- Ubuntu 20.04, 18.04
- Windows 10, 11
git clone https://github.com/hanruihua/rl_rvo_nav.git
cd rl_rvo_nav
./setup.sh
- First stage: circle scenario with 4 robots.
python train_process.py --use_gpu
or
python train_process_s1.py
- Second stage: continue to train in circle scenario with 10 robots.
python train_process.py --robot_number 10 --train_epoch 2000 --load_name YOUR_MODEL_PATH --use_gpu --con_train
or
python train_process_s2.py
You can test the policy trained from the previous steps by following command:
python policy_test.py --robot_number 10 --dis_mode 3 --model_name YOUR_MODEL_NAME --render
Note1: dis_mode, 3, circle scenario; 2 random scenario
Note2: YOUR_MODEL_NAME refer to the path and name of the check point file in the policy_train/model_save folder
We provide the pre_trained model, you can test this model by following command:
python policy_test_pre_train.py --render
If you find this code or paper is helpful, you can star this repository and cite our paper:
@article{han2022reinforcement,
title={Reinforcement Learned Distributed Multi-Robot Navigation With Reciprocal Velocity Obstacle Shaped Rewards},
author={Han, Ruihua and Chen, Shengduo and Wang, Shuaijun and Zhang, Zeqing and Gao, Rui and Hao, Qi and Pan, Jia},
journal={IEEE Robotics and Automation Letters},
volume={7},
number={3},
pages={5896--5903},
year={2022},
publisher={IEEE}
}
Han Ruihua
Contact: [email protected]