Skip to content

Commit

Permalink
add org_program to IpuCompiler compiled prgram for save inference mod…
Browse files Browse the repository at this point in the history
  • Loading branch information
XBWGC authored Sep 18, 2021
1 parent e653bf7 commit aa85ec2
Show file tree
Hide file tree
Showing 2 changed files with 162 additions and 0 deletions.
3 changes: 3 additions & 0 deletions python/paddle/fluid/compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -574,6 +574,9 @@ def compile(self, feed_list, fetch_list, feed_var_name='feed', scope=None):
feed_var = program_global_block.var(feed_name)
feed_var.desc.set_need_check_feed(False)

if not hasattr(program, 'org_program'):
program.org_program = self._program

return program


Expand Down
159 changes: 159 additions & 0 deletions python/paddle/fluid/tests/unittests/ipu/test_ipu_inference_model_io.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import shutil

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.compiler as compiler
import paddle.optimizer
import paddle.static
from paddle.fluid.tests.unittests.ipu.op_test_ipu import IPUOpTest

paddle.enable_static()


@unittest.skipIf(not paddle.is_compiled_with_ipu(),
"core is not compiled with IPU")
class TestBase(IPUOpTest):
def setUp(self):
self.set_atol()
self.set_feed()
self.set_attrs()

def set_feed(self):
self.feed_shape = []
self.feed_shape.append([1, 3, 10, 10])

self.feed = {}
self.feed["in_0"] = np.random.uniform(
size=self.feed_shape[0]).astype(np.float32)

self.feed_list = list(self.feed.keys())

def set_attrs(self):
self.attrs = {}
self.attrs['steps'] = 100
self.attrs['save_at_step'] = 20
self.attrs['is_training'] = True
self.attrs['opt_type'] = 'sgd'
self.attrs['path'] = 'model'
self.attrs['model_name'] = 'test'

def _test_save(self):
scope = fluid.core.Scope()
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = self.SEED
startup_prog.random_seed = self.SEED
generator = fluid.unique_name.UniqueNameGenerator()
self.full_name = '/'.join(
[self.attrs['path'], self.attrs['model_name']])

with fluid.unique_name.guard(generator):
with fluid.scope_guard(scope):
with paddle.static.program_guard(main_prog, startup_prog):
x = paddle.static.data(
name=self.feed_list[0],
shape=self.feed_shape[0],
dtype='float32')
conv1 = paddle.static.nn.conv2d(
x,
num_filters=3,
filter_size=3,
bias_attr=False,
name='conv2d')
loss = paddle.mean(conv1)

if self.attrs['is_training']:
if self.attrs['opt_type'] == 'sgd':
sgd = paddle.optimizer.SGD(learning_rate=1e-2)
sgd.minimize(loss)
elif self.attrs['opt_type'] == 'adam':
adam = paddle.optimizer.Adam(learning_rate=1e-2)
adam.minimize(loss)
elif self.attrs['opt_type'] == 'lamb':
lamb = paddle.optimizer.Lamb(learning_rate=1e-2)
lamb.minimize(loss)
fetch_list = [loss.name]

place = paddle.IPUPlace()
exe = paddle.static.Executor(place)
exe.run(startup_prog)

ipu_strategy = compiler.get_ipu_strategy()
ipu_strategy.is_training = self.attrs['is_training']
program = compiler.IpuCompiler(
main_prog, ipu_strategy=ipu_strategy).compile(
self.feed_list, fetch_list)

result = []
for i in range(self.attrs['steps']):
tmp = exe.run(program,
feed=self.feed,
fetch_list=fetch_list)
result.append(tmp)

paddle.static.save_inference_model(
self.full_name, x, loss, exe, program=program.org_program)

def _test_load(self, run_ipu):
if run_ipu:
place = paddle.IPUPlace()
else:
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)

[inference_program, feed_target_names, fetch_targets] = (
paddle.static.load_inference_model(self.full_name, exe))

tmp = exe.run(
inference_program, feed=self.feed, fetch_list=[fetch_targets])

return tmp

def test_base(self):
self._test_save()
cpu_res = self._test_load(False)
ipu_res = self._test_load(True)

self.assertTrue(np.allclose(cpu_res, ipu_res, atol=self.atol))

shutil.rmtree(self.attrs['path'], True)


class TestAdam(TestBase):
def set_attrs(self):
self.attrs = {}
self.attrs['steps'] = 100
self.attrs['is_training'] = True
self.attrs['opt_type'] = 'adam'
self.attrs['path'] = 'model'
self.attrs['model_name'] = 'test'


class TestLamb(TestBase):
def set_attrs(self):
self.attrs = {}
self.attrs['steps'] = 100
self.attrs['is_training'] = True
self.attrs['opt_type'] = 'lamb'
self.attrs['path'] = 'model'
self.attrs['model_name'] = 'test'


if __name__ == "__main__":
unittest.main()

0 comments on commit aa85ec2

Please sign in to comment.