Skip to content

ggjy/HitDet.pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

38aee61 · Mar 26, 2021

History

10 Commits
Jul 20, 2020
Apr 16, 2020
Apr 16, 2020
Apr 16, 2020
Apr 16, 2020
Apr 16, 2020
Mar 26, 2021
Apr 16, 2020
Apr 16, 2020
Apr 16, 2020
Apr 16, 2020
Apr 16, 2020

Repository files navigation

Hit-Detector Code Base

Implementation of our CVPR2020 paper Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection

We released the searched Hit-Detector Architecture.

Environments

  • Python 3.6
  • Pytorch>=1.1.0
  • Torchvision == 0.3.0

You can directly run the code sh env.sh to setup the running environment. We use 8 GPUs (32GB V100) to train our detector, you can adjust the batch size in configs by yourselves.

Data Preparatoin

Your directory tree should be look like this:

$HitDet.pytorch/data
├── coco
│   ├── annotations
│   ├── train2017
│   └── val2017
│
├── VOCdevkit
│   ├── VOC2007
│   │   ├── Annotations
│   │   ├── ImageSets
│   │   ├── JPEGImages
│   │   ├── SegmentationClass
│   │   └── SegmentationObject
│   └── VOC2012
│       ├── Annotations
│       ├── ImageSets
│       ├── JPEGImages
│       ├── SegmentationClass
│       └── SegmentationObject

Getting Start

Our pretrained backbone params can be found in BaiduCloud. pwd: jbsm or GoogleDrive

Train the searched model:

cd scripts
sh train_hit_det.sh

Results on COCO minival

Model Params mAP
FPN 41.8M 36.6
Hit-Det 27.6M 41.3

Citation

@InProceedings{guo2020hit,
author = {Guo, Jianyuan and Han, Kai and Wang, Yunhe and Zhang, Chao and Yang, Zhaohui and Wu, Han and Chen, Xinghao and Xu, Chang},
title = {Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection},
booktitle = {arXiv preprint arXiv:2003.11818},
year = {2020}
}

Acknowledgement

Our code is based on the open source project MMDetection.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published