-
Notifications
You must be signed in to change notification settings - Fork 26
/
train.py
112 lines (93 loc) · 3.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from __future__ import division
import argparse
import torch
# torch.multiprocessing.set_sharing_strategy('file_system')
# for file_descriptor, but cause shm leak while nas optimizer
import os
from mmcv import Config
from mmdet import __version__
from mmdet.datasets import build_dataset
from mmdet.apis import (train_detector, init_dist, get_root_logger,
set_random_seed)
from mmdet.models import build_detector
def parse_args():
parser = argparse.ArgumentParser(description='Train a detector')
parser.add_argument('--config', help='train config file path')
parser.add_argument('--work_dir', default='/cache/tmp', help='path to save log and model')
parser.add_argument(
'--resume_from', help='the checkpoint file to resume from')
parser.add_argument(
'--validate',
action='store_true',
help='whether to evaluate the checkpoint during training')
parser.add_argument(
'--gpus',
type=int,
default=1,
help='number of gpus to use '
'(only applicable to non-distributed training)')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args, unparsed = parser.parse_known_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
# Solve SyncBN deadlock
os.environ["NCCL_LL_THRESHOLD"] = '0'
return args
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# set cudnn_benchmark
if cfg.get('cudnn_benchmark', False):
torch.backends.cudnn.benchmark = True
# update configs according to CLI args
cfg.work_dir = args.work_dir
cfg.gpus = args.gpus
if args.resume_from is not None:
cfg.resume_from = args.resume_from
# init distributed env first, since logger depends on the dist info.
if args.launcher == 'none':
distributed = False
else:
distributed = True
init_dist(args.launcher, **cfg.dist_params)
# init logger before other steps
logger = get_root_logger(cfg.log_level)
logger.info('Distributed training: {}'.format(distributed))
# set random seeds
if args.seed is not None:
logger.info('Set random seed to {}'.format(args.seed))
set_random_seed(args.seed)
model = build_detector(
cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
train_dataset = build_dataset(cfg.data.train)
model = torch.nn.parallel.DistributedDataParallel(
model.cuda(), find_unused_parameters=True, device_ids=[args.local_rank], output_device=args.local_rank)
print(model)
print("Model have {} paramerters.".format(sum(x.numel() for x in model.parameters()) / 1e6))
print("Model have {} backbone.".format(sum(x.numel() for x in model.module.backbone.parameters()) / 1e6))
print("Model have {} neck.".format(sum(x.numel() for x in model.module.neck.parameters()) / 1e6))
print("Model have {} head.".format(sum(x.numel() for x in model.module.bbox_head.parameters()) / 1e6))
if cfg.checkpoint_config is not None:
# save mmdet version, config file content and class names in
# checkpoints as meta data
cfg.checkpoint_config.meta = dict(
mmdet_version=__version__,
config=cfg.text,
CLASSES=train_dataset.CLASSES)
# add an attribute for visualization convenience
model.CLASSES = train_dataset.CLASSES
train_detector(
model,
train_dataset,
cfg,
distributed=distributed,
validate=args.validate,
logger=logger)
if __name__ == '__main__':
main()