Skip to content

Commit

Permalink
Merge pull request #34 from epfl-lts2/new-projections
Browse files Browse the repository at this point in the history
feat: add spsd and lineq projection operators
  • Loading branch information
mdeff authored Jan 26, 2021
2 parents b0eb893 + f809a01 commit be4b6a2
Show file tree
Hide file tree
Showing 3 changed files with 224 additions and 28 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.rst
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@ and this project adheres to `Semantic Versioning <https://semver.org>`_.
Unreleased
----------

* New function: proj_linalg.
* New function: proj_sdsp.
* New function: proj_positive.
* New function: structured_sparsity.
* Continuous integration with Python 3.6, 3.7, 3.8, 3.9. Dropped 2.7, 3.4, 3.5.
Expand Down
169 changes: 148 additions & 21 deletions pyunlocbox/functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,8 @@
proj_positive
proj_b2
proj_lineq
proj_spsd
**Miscellaneous**
Expand Down Expand Up @@ -803,24 +805,13 @@ class proj(func):
See generic attributes descriptions of the
:class:`pyunlocbox.functions.func` base class.
Parameters
----------
epsilon : float, optional
The radius of the ball. Default is 1.
method : {'FISTA', 'ISTA'}, optional
The method used to solve the problem. It can be 'FISTA' or 'ISTA'.
Default is 'FISTA'.
Notes
-----
* All indicator functions (projections) evaluate to zero by definition.
"""

def __init__(self, epsilon=1, method='FISTA', **kwargs):
def __init__(self, **kwargs):
super(proj, self).__init__(**kwargs)
self.epsilon = epsilon
self.method = method

def _eval(self, x):
# Matlab version returns a small delta to avoid division by 0 when
Expand All @@ -835,9 +826,9 @@ class proj_positive(proj):
r"""
Projection on the positive octant (eval, prox).
This function is the indicator function :math:`i_S(z)` of the set S which
is zero if `z` is in the set and infinite otherwise. The set S is defined
by :math:`\left\{z \in \mathbb{R}^N \mid z \leq 0 \right\}`.
This function is the indicator function :math:`i_S(z)` of the set
:math:`S = \left\{z \in \mathbb{R}^N \mid z \leq 0 \right\}`
that is zero if :math:`z` is in the set and infinite otherwise.
See generic attributes descriptions of the
:class:`pyunlocbox.functions.proj` base class. Note that the constructor
Expand Down Expand Up @@ -867,19 +858,78 @@ def _prox(self, x, T):
return np.clip(x, 0, np.inf)


class proj_spsd(proj):
r"""
Projection on symmetric positive semi-definite matrices (eval, prox).
This function is the indicator function :math:`i_S(M)` of the set
:math:`S = \left\{M \in \mathbb{R}^{N \times N}
\mid M \succeq 0, M=M^T \right\}`
that is zero if :math:`M` is in the set and infinite otherwise.
See generic attributes descriptions of the
:class:`pyunlocbox.functions.proj` base class. Note that the constructor
takes keyword-only parameters.
Notes
-----
* The evaluation of this function is zero.
Examples
--------
>>> from pyunlocbox import functions
>>> f = functions.proj_spsd()
>>> A = np.array([[0, -1] , [-1, 1]])
>>> A = (A + A.T) / 2 # Symmetrize the matrix.
>>> np.linalg.eig(A)[0]
array([-0.61803399, 1.61803399])
>>> f.eval(A)
0
>>> Aproj = f.prox(A, 0)
>>> np.linalg.eig(Aproj)[0]
array([0. , 1.61803399])
"""
def __init__(self, **kwargs):
# Constructor takes keyword-only parameters to prevent user errors.
super(proj_spsd, self).__init__(**kwargs)

def _prox(self, x, T):
isreal = np.isreal(x).all()

# 1. make it symmetric.
sol = (x + np.conj(x.T)) / 2

# 2. make it semi-positive.
D, V = np.linalg.eig(sol)
D = np.real(D)
if isreal:
V = np.real(V)
D = np.clip(D, 0, np.inf)
sol = V @ np.diag(D) @ np.conj(V.T)
return sol


class proj_b2(proj):
r"""
Projection on the L2-ball (eval, prox).
This function is the indicator function :math:`i_S(z)` of the set S which
is zero if `z` is in the set and infinite otherwise. The set S is defined
by :math:`\left\{z \in \mathbb{R}^N \mid \|A(z)-y\|_2 \leq \epsilon
\right\}`.
This function is the indicator function :math:`i_S(z)` of the set
:math:`S= \left\{z \in \mathbb{R}^N \mid \|Az-y\|_2 \leq \epsilon \right\}`
that is zero if :math:`z` is in the set and infinite otherwise.
See generic attributes descriptions of the
:class:`pyunlocbox.functions.proj` base class. Note that the constructor
takes keyword-only parameters.
Parameters
----------
epsilon : float, optional
The radius of the ball. Default is 1.
method : {'FISTA', 'ISTA'}, optional
The method used to solve the problem. It can be 'FISTA' or 'ISTA'.
Default is 'FISTA'.
Notes
-----
* The `tol` parameter is defined as the tolerance for the projection on the
Expand All @@ -893,6 +943,10 @@ class proj_b2(proj):
:math:`\|A(z)-y\|_2 \leq \epsilon`. It is thus a projection of the vector
`x` onto an L2-ball of diameter `epsilon`.
See Also
--------
proj_lineq : use instead of ``epsilon=0``
Examples
--------
>>> from pyunlocbox import functions
Expand All @@ -904,10 +958,11 @@ class proj_b2(proj):
array([1.70710678, 1.70710678])
"""

def __init__(self, **kwargs):
def __init__(self, epsilon=1, method='FISTA', **kwargs):
# Constructor takes keyword-only parameters to prevent user errors.
super(proj_b2, self).__init__(**kwargs)
self.epsilon = epsilon
self.method = method

def _prox(self, x, T):

Expand Down Expand Up @@ -993,6 +1048,78 @@ def _prox(self, x, T):
return sol


class proj_lineq(proj):
r"""
Projection on the plane satisfying the linear equality Az = y (eval, prox).
This function is the indicator function :math:`i_S(z)` of the set
:math:`S = \left\{z \in \mathbb{R}^N \mid Az = y \right\}`
that is zero if :math:`z` is in the set and infinite otherwise.
The proximal operator is
:math:`\operatorname{arg\,min}_z \| z - x \|_2 \text{ s.t. } Az = y`.
See generic attributes descriptions of the
:class:`pyunlocbox.functions.proj` base class. Note that the constructor
takes keyword-only parameters.
Notes
-----
* A parameter `pinvA`, the pseudo-inverse of `A`, must be provided if the
parameter `A` is provided as an operator/callable (not a matrix).
* The evaluation of this function is zero.
See Also
--------
proj_b2 : quadratic case
Examples
--------
>>> from pyunlocbox import functions
>>> import numpy as np
>>> x = np.array([0, 0])
>>> A = np.array([[1, 1]])
>>> pinvA = np.linalg.pinv(A)
>>> y = np.array([1])
>>> f = functions.proj_lineq(A=A, pinvA=pinvA, y=y)
>>> sol = f.prox(x, 0)
>>> sol
array([0.5, 0.5])
>>> np.abs(A.dot(sol) - y) < 1e-15
array([ True])
"""
def __init__(self, A=None, pinvA=None, **kwargs):
# Constructor takes keyword-only parameters to prevent user errors.
super(proj_lineq, self).__init__(A=A, **kwargs)

if pinvA is None:
if A is None:
print("Are you sure about the parameters?" +
"The projection will return y.")
self.pinvA = lambda x: x
else:
if callable(A):
raise ValueError(
"Provide A as a numpy array or provide pinvA.")
else:
# Transform matrix form to operator form.
self._pinvA = np.linalg.pinv(A)
self.pinvA = lambda x: self._pinvA.dot(x)
else:
if callable(pinvA):
self.pinvA = pinvA
else:
self.pinvA = lambda x: pinvA.dot(x)

def _prox(self, x, T):
# Applying the projection formula.
# (for now, only the non scalable version)
residue = self.A(x) - self.y()
sol = x - self.pinvA(residue)
return sol


class structured_sparsity(func):
r"""
Structured sparsity (eval, prox).
Expand Down
81 changes: 74 additions & 7 deletions pyunlocbox/tests/test_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,8 +51,10 @@ def assert_equivalent(param1, param2):
assert_equivalent({'y': 3.2}, {'y': lambda: 3.2})
assert_equivalent({'A': None}, {'A': np.identity(3)})
A = np.array([[-4, 2, 5], [1, 3, -7], [2, -1, 0]])
pinvA = np.linalg.pinv(A) # For proj_linalg.
assert_equivalent({'A': A}, {'A': A, 'At': A.T})
assert_equivalent({'A': lambda x: A.dot(x)}, {'A': A, 'At': A})
assert_equivalent({'A': lambda x: A.dot(x), 'pinvA': pinvA},
{'A': A, 'At': A})

def test_dummy(self):
"""
Expand Down Expand Up @@ -95,16 +97,16 @@ def test_norm_l2(self):
self.assertEqual(f.eval([4, 6]), 0)
self.assertEqual(f.eval([5, -2]), 256 + 4)
nptest.assert_allclose(f.grad([4, 6]), 0)
# nptest.assert_allclose(f.grad([5, -2]), [8, -64])
# nptest.assert_allclose(f.grad([5, -2]), [8, -64])
nptest.assert_allclose(f.prox([4, 6], 1), [4, 6])

f = functions.norm_l2(lambda_=2, y=np.fft.fft([2, 4]) / np.sqrt(2),
A=lambda x: np.fft.fft(x) / np.sqrt(x.size),
At=lambda x: np.fft.ifft(x) * np.sqrt(x.size))
# self.assertEqual(f.eval(np.fft.ifft([2, 4])*np.sqrt(2)), 0)
# self.assertEqual(f.eval([3, 5]), 2*np.sqrt(25+81))
# self.assertEqual(f.eval(np.fft.ifft([2, 4])*np.sqrt(2)), 0)
# self.assertEqual(f.eval([3, 5]), 2*np.sqrt(25+81))
nptest.assert_allclose(f.grad([2, 4]), 0)
# nptest.assert_allclose(f.grad([3, 5]), [4*np.sqrt(5), 4*3])
# nptest.assert_allclose(f.grad([3, 5]), [4*np.sqrt(5), 4*3])
nptest.assert_allclose(f.prox([2, 4], 1), [2, 4])
nptest.assert_allclose(f.prox([3, 5], 1), [2.2, 4.2])
nptest.assert_allclose(f.prox([2.2, 4.2], 1), [2.04, 4.04])
Expand Down Expand Up @@ -417,6 +419,46 @@ def test_proj_b2(self):
f.method = 'NOT_A_VALID_METHOD'
self.assertRaises(ValueError, f.prox, x, 0)

def test_proj_lineq(self):
"""
Test the projection on Ax = y
"""
x = np.zeros([10])
A = np.ones([1, 10])
y = np.array([10])
f = functions.proj_lineq(A=A, y=y)
sol = f.prox(x, 0)
np.testing.assert_allclose(sol, np.ones([10]))
np.testing.assert_allclose(A.dot(sol), y)

f = functions.proj_lineq(A=A)
sol = f.prox(x, 0)
np.testing.assert_allclose(sol, np.zeros([10]))

for i in range(1, 15):
x = np.random.randn(10)
y = np.random.randn(i)
A = np.random.randn(i, 10)
pinvA = np.linalg.pinv(A)
f1 = functions.proj_lineq(A=A, y=y)
f2 = functions.proj_lineq(A=lambda x: A.dot(x), pinvA=pinvA, y=y)
f3 = functions.proj_lineq(A=A, pinvA=lambda x: pinvA.dot(x), y=y)
f4 = functions.proj_lineq(A=A, pinvA=pinvA, y=y)
sol1 = f1.prox(x, 0)
sol2 = f2.prox(x, 0)
sol3 = f3.prox(x, 0)
sol4 = f4.prox(x, 0)
np.testing.assert_allclose(sol1, sol2)
np.testing.assert_allclose(sol1, sol3)
np.testing.assert_allclose(sol1, sol4)
if i <= x.size:
np.testing.assert_allclose(A.dot(sol1), y)
if i >= x.size:
np.testing.assert_allclose(sol1, pinvA.dot(y))

self.assertRaises(ValueError, functions.proj_lineq, A=lambda x: x)

def test_proj_positive(self):
"""
Test the projection on the positive octant.
Expand All @@ -430,6 +472,30 @@ def test_proj_positive(self):
nptest.assert_equal(res[x > 0], x[x > 0]) # Positives are unchanged.
self.assertEqual(fpos.eval(x), 0)

def test_proj_spsd(self):
"""
Test the projection on symmetric positive semi-definite matrices.
"""
f_spds = functions.proj_spsd()
A = np.random.randn(10, 10)
A = A + A.T
eig1 = np.sort(np.real(np.linalg.eig(A)[0]))
res = f_spds.prox(A, T=1)
eig2 = np.sort(np.real(np.linalg.eig(res)[0]))
# All eigenvalues are positive.
assert ((eig2 > -1e-13).all())

# Positive value are unchanged.
np.testing.assert_allclose(eig2[eig1 > 0], eig1[eig1 > 0])

# The symmetrization works.
A = np.random.rand(10, 10) + 10 * np.eye(10)
res = f_spds.prox(A, T=1)
np.testing.assert_allclose(res, (A + A.T) / 2)

self.assertEqual(f_spds.eval(A), 0)

def test_structured_sparsity(self):
"""
Test the structured sparsity function.
Expand Down Expand Up @@ -503,8 +569,9 @@ def test_independent_problems(self):
if name == 'norm_tv':
# Each column is one-dimensional.
f = func(dim=1, maxit=20, tol=0)
elif name == 'norm_nuclear':
# TODO: make this test two dimensional for the norm nuclear?
elif name in ['norm_nuclear', 'proj_spsd']:
# TODO: make this test two dimensional for the norm nuclear
# and the spsd projection?
continue
else:
f = func()
Expand Down

0 comments on commit be4b6a2

Please sign in to comment.