This is a simple implementation of Histogram of Oriented Gradients for Human Detection, and used SVM as classifier. Please star if you like this implementation.
$ pip install scikit-learn
$ pip install opencv-python
$ python train.py # for training
$ python evaluate.py # evaluate
$ python seq2jpeg.py # transfer the seq videos to jpg images
$ python vbb2xml.py # transfer the vbb annotations to xml files
There is a pretrained model in model folder, please use pickle to load the model.
>>>import pickle
>>>pickle.load(filename)
-
IRNIA human Dataset(http://pascal.inrialpes.fr/data/human/)
-
Caltech Pedestrian Detection(http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/)
You need to use seq2jpeg.py and vbb2xml.py to preconditioning the data.