-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
114 lines (95 loc) · 3.1 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import pickle,cv2,os,json
import PIL.Image as Image
import numpy as np
'''
测试数据集目录结构:
-testphoto
-tst000001.jpg
-tst000002.jpg
...
结果保存json格式
{‘filename’:result}
'''
# 测试数据检测
def eval(path,model):
global result
hog = cv2.HOGDescriptor()
for p,dirs,fnames in os.walk(path):
for fname in fnames:
pth = os.path.join(p, fname)
img=cv2.imread(pth)
feature = hog.compute(img)
if feature is None:
continue
else:
feature = feature.ravel().reshape(1,3780)
res=model.predict(feature)
result[fname[3:-4]]=int(res[0])
# 任意图像行人检测
def test(image):
result = {}
hog = cv2.HOGDescriptor()
h,w = image.shape
# 63*128滑窗检测,跳数为8
for x in range(0,h-128,4):
for y in range(0,w-64,8):
block = image[x:x+129,y:y+65]
feature = hog.compute(block)
if feature is None:
continue
else:
feature = feature.ravel().reshape(1,3780)
res = model.predict(feature)
if int(res) == 1:
result[(x,y)]=1
return result
# 尺度变换,输入尺度坐标和点坐标
def scalerchange(scale, dots):
res={}
for k in dots.keys():
x,y = k
x1, y1 = 1/2**scale*x, 1/2**scale*y
res[(x1,y1)] = 1
return res
# 直接绘制标记框,输入为检测图像和检测结果
def drawVirtrualBox(image,res):
for v in res.keys():
x,y = v
cv2.rectangle(image, (y,x), (y+64,x+128), (184,1,2) ,1)
cv2.imshow("result", image)
cv2.waitKey()
# 合并重叠标记框并绘制,输入为检测图像和检测结果
def drawVirtrualBox2(image, res):
for k,v in res.items():
if v==0:
continue
x,y = k
maxy, maxx, minx, miny = y + 64, x + 128, x, y
for k1 in res.keys():
x1,y1 = k1
if minx<=x1<=maxx and miny<=y1<=maxy or miny<=y1+64<=maxy:
res[k1]=0
maxy = max(maxy, y1+64)
maxx = max(maxx, x1+128)
miny = min(miny, y1)
minx = min(minx, x1)
cv2.rectangle(image, (miny,minx), (maxy,maxx), (255, 1, 2), 2)
cv2.imshow("result", image)
cv2.waitKey()
# 测试集评估,输入为测试集路径
def testset(testset):
eval(testset, model)
with open(".\\results\\myresult_m3.json", 'w', encoding='utf-8')as json_file:
json.dump(result, json_file, ensure_ascii=False)
if __name__=="__main__":
# 加载模型
f = open('saved_model/m4.pickle','rb')
model = pickle.load(f)
f.close()
result={}
testphoto = "dataset/testphoto"
# testset(testphoto)
img = np.asarray(Image.open("test21.jpg").convert('L'))
result = test(img)
drawVirtrualBox(cv2.imread("test21.jpg"),result)
drawVirtrualBox2(cv2.imread("test21.jpg"),result)